gpt-pretrain/lit_train.py

239 lines
6.9 KiB
Python
Raw Normal View History

2023-05-04 21:52:25 +08:00
import argparse
2023-05-07 13:01:02 +08:00
from functools import partial
2023-05-04 21:52:25 +08:00
from itertools import chain
2023-05-07 13:01:02 +08:00
from typing import Dict, Tuple
2023-05-04 21:52:25 +08:00
import datasets
import pytorch_lightning as pl
import torch
from torch.utils.data import ConcatDataset, DataLoader
from transformers import (
BatchEncoding,
DefaultDataCollator,
PreTrainedTokenizer,
set_seed,
)
2023-05-07 13:01:02 +08:00
from lit_module import LitModule
from lit_patches import apply_all_patches
2023-05-07 13:01:02 +08:00
from utils import load_tokenizer
2023-05-04 21:52:25 +08:00
def split_raw_dataset(
raw_dataset: datasets.DatasetDict,
) -> Tuple[datasets.Dataset, datasets.Dataset]:
2024-02-24 12:06:30 +08:00
if "validation" in raw_dataset:
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["validation"]
2023-05-04 21:52:25 +08:00
else:
2024-02-24 12:06:30 +08:00
raw_dataset = raw_dataset["train"].train_test_split(test_size=0.05, seed=args.seed)
train_dataset, val_dataset = raw_dataset["train"], raw_dataset["test"]
2023-05-04 21:52:25 +08:00
return train_dataset, val_dataset
2023-05-28 20:02:56 +08:00
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
2023-05-04 21:52:25 +08:00
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
2024-02-24 12:06:30 +08:00
result["labels"] = result["input_ids"].copy()
2023-05-04 21:52:25 +08:00
result = BatchEncoding(result)
return result
2024-02-24 12:06:30 +08:00
def format_inputs(examples):
p = examples["段落"]
mergeLine = ""
for line in p:
mergeLine += line["内容"] + "\n"
return {"text": mergeLine}
2023-05-04 21:52:25 +08:00
def tokenize_inputs(
examples: Dict[str, list],
tokenizer: PreTrainedTokenizer,
2024-02-24 12:06:30 +08:00
column_name: str = "text",
2023-05-04 21:52:25 +08:00
) -> BatchEncoding:
return tokenizer(examples[column_name], return_attention_mask=False)
dataset_column_names = list(dataset.features)
dataset = dataset.map(
2024-02-24 12:06:30 +08:00
partial(format_inputs),
batched=False,
num_proc=args.num_proc,
remove_columns=dataset_column_names,
)
dataset_column_names = list(dataset.features)
dataset = dataset.map(
partial(tokenize_inputs, tokenizer=tokenizer),
2023-05-04 21:52:25 +08:00
batched=True,
num_proc=args.num_proc,
remove_columns=dataset_column_names,
2024-02-24 12:06:30 +08:00
)
dataset = dataset.map(
2023-05-04 21:52:25 +08:00
partial(group_texts, block_size=tokenizer.model_max_length),
batched=True,
num_proc=args.num_proc,
)
2024-02-24 12:06:30 +08:00
2023-05-04 21:52:25 +08:00
return dataset
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
help="Name of or path to model",
2024-02-24 12:06:30 +08:00
default="gpt2",
2023-05-04 21:52:25 +08:00
)
parser.add_argument(
"--learning_rate",
type=float,
help="Learning rate",
default=0.0001,
)
parser.add_argument(
"--use_tril_attention_mask",
help="Use tril attention mask during training",
action="store_true",
)
2024-02-24 12:06:30 +08:00
parser.add_argument(
"--precision",
help="precision:bf16-mixed,16-mixed,32-true",
action="store_true",
default="16-mixed",
)
2023-05-04 21:52:25 +08:00
parser.add_argument(
"--tokenizer_name_or_path",
type=str,
help="Name of or path to tokenizer",
default=None,
)
parser.add_argument(
"--dataset_name",
2024-02-24 12:06:30 +08:00
nargs="+",
2023-05-04 21:52:25 +08:00
type=str,
help="Name(s) of dataset. To specify a config, pass a <dataset_name>:<dataset_config_name>",
2024-02-24 12:06:30 +08:00
default=["/home/colin/develop/dataset/liwu/MNBVC/wiki"],
2023-05-04 21:52:25 +08:00
)
parser.add_argument(
"--train_batch_size",
type=int,
help="Batch size of training",
2024-02-22 15:03:32 +08:00
default=2,
2023-05-04 21:52:25 +08:00
)
parser.add_argument(
"--val_batch_size",
type=int,
help="Batch size of validating",
2024-02-22 15:03:32 +08:00
default=2,
2023-05-04 21:52:25 +08:00
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
help="Accumulate grad batches",
default=32,
)
2023-05-04 21:52:25 +08:00
parser.add_argument(
"--num_proc",
type=str,
help="Number of data processes",
2024-02-24 12:06:30 +08:00
default=12,
2023-05-04 21:52:25 +08:00
)
parser.add_argument(
"--max_epochs",
type=int,
help="Max epochs",
default=None,
)
parser.add_argument(
"--strategy",
type=str,
help="Name of pytorch lightning distribution strategy",
2024-02-24 12:06:30 +08:00
default="fsdp",
)
2023-05-04 21:52:25 +08:00
parser.add_argument(
"--resume_from_ckpt_path",
type=str,
help="Checkpoint file path to resume from",
default=None,
)
parser.add_argument(
"--seed",
type=int,
2023-05-04 21:52:25 +08:00
help="Random seed",
default=42,
)
args = parser.parse_args()
return args
2024-02-24 12:06:30 +08:00
if __name__ == "__main__":
2023-05-04 21:52:25 +08:00
args = parse_args()
if args.tokenizer_name_or_path is None:
args.tokenizer_name_or_path = args.model_name
set_seed(args.seed)
# lightning module
2023-05-28 20:02:56 +08:00
lit_module = LitModule(args.model_name, args.learning_rate, args.use_tril_attention_mask)
2023-05-04 21:52:25 +08:00
# datasets
tokenizer = load_tokenizer(args.tokenizer_name_or_path)
train_dataset_list = []
val_dataset_list = []
for dataset_name in args.dataset_name:
2024-02-24 12:06:30 +08:00
dataset_args = dataset_name.split(":")
raw_dataset = datasets.load_dataset(
"json", data_files="/home/colin/develop/dataset/liwu/MNBVC/wiki/20230197/0.jsonl.gz"
)
# raw_dataset = datasets.load_dataset(*dataset_args)
2023-05-04 21:52:25 +08:00
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
train_dataset = process_dataset(train_dataset, tokenizer)
val_dataset = process_dataset(val_dataset, tokenizer)
train_dataset_list.append(train_dataset)
val_dataset_list.append(val_dataset)
train_dataset = ConcatDataset(train_dataset_list)
val_dataset = ConcatDataset(val_dataset_list)
# dataloaders
train_dataloader = DataLoader(
train_dataset,
batch_size=args.train_batch_size,
num_workers=args.num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
2023-05-04 21:52:25 +08:00
shuffle=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=args.val_batch_size,
num_workers=args.num_proc,
collate_fn=DefaultDataCollator(),
persistent_workers=True,
2023-05-04 21:52:25 +08:00
)
2024-02-22 15:03:32 +08:00
ne = next(train_dataloader._get_iterator())
2023-05-04 21:52:25 +08:00
# trainer
2024-02-22 15:03:32 +08:00
# apply_all_patches()
2024-02-24 12:06:30 +08:00
torch.set_float32_matmul_precision("medium")
precision = args.precision
2023-05-04 21:52:25 +08:00
lit_trainer = pl.Trainer(
2024-02-24 12:06:30 +08:00
accelerator="gpu",
2023-05-04 21:52:25 +08:00
precision=precision,
log_every_n_steps=5,
accumulate_grad_batches=args.accumulate_grad_batches,
strategy=args.strategy,
max_epochs=args.max_epochs,
2023-05-04 21:52:25 +08:00
)
lit_trainer.fit(
lit_module,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
ckpt_path=args.resume_from_ckpt_path,
)