[feature] custom_models

This commit is contained in:
Yiqing-Zhou 2023-05-14 22:23:16 +08:00
parent 5e6b747baf
commit 216bc4643c
4 changed files with 446 additions and 10 deletions

52
custom_models/__init__.py Normal file
View File

@ -0,0 +1,52 @@
import importlib
from collections import OrderedDict
from transformers.models.auto import auto_factory, configuration_auto
class _LazyAutoMapping(auto_factory._LazyAutoMapping):
def _load_attr_from_module(self, model_type, attr):
module_name = auto_factory.model_type_to_module_name(model_type)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(
f".{module_name}", "custom_models"
)
return auto_factory.getattribute_from_module(self._modules[module_name], attr)
MODEL_MAPPING_NAMES = OrderedDict(
[
("gpt2", "GPT2Model"),
]
)
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
("gpt2", "GPT2LMHeadModel"),
]
)
MODEL_MAPPING = _LazyAutoMapping(
configuration_auto.CONFIG_MAPPING_NAMES, MODEL_MAPPING_NAMES
)
MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(
configuration_auto.CONFIG_MAPPING_NAMES, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
)
class AutoModel(auto_factory._BaseAutoModelClass):
_model_mapping = MODEL_MAPPING
AutoModel = auto_factory.auto_class_update(AutoModel)
class AutoModelForCausalLM(auto_factory._BaseAutoModelClass):
_model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
AutoModelForCausalLM = auto_factory.auto_class_update(AutoModelForCausalLM)

View File

View File

@ -0,0 +1,369 @@
"""Override transformers GPT2 to support tril attention mask"""
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
import transformers
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.models.gpt2 import (
_CHECKPOINT_FOR_DOC,
_CONFIG_FOR_DOC,
GPT2_INPUTS_DOCSTRING,
)
from transformers.utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings_to_model_forward,
)
class GPT2Model(transformers.models.gpt2.GPT2Model):
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if attention_mask.dim() == 2:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, None, ...]
else:
raise ValueError(
f"attention_mask.dim() is {attention_mask.dim()}, should be 2 or 3"
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = (
() if output_attentions and self.config.add_cross_attention else None
)
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(
past_state.to(hidden_states.device) for past_state in layer_past
)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (
outputs[2 if use_cache else 1],
)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (
outputs[3 if use_cache else 2],
)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class GPT2LMHeadModel(transformers.models.gpt2.GPT2LMHeadModel):
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat(
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1
)
# update position_ids
if "position_ids" in model_kwargs:
position_ids = model_kwargs["position_ids"]
if model_kwargs["past_key_values"] is not None:
model_kwargs["position_ids"] = (position_ids[:, -1] + 1).unsqueeze(-1)
else:
model_kwargs["position_ids"] = torch.cat(
[position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=-1
)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
if attention_mask.dim() == 2:
model_kwargs["attention_mask"] = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, -1, :]
attention_mask = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
model_kwargs["attention_mask"] = attention_mask
else:
raise ValueError(
f"attention_mask.dim() is {attention_mask.dim()}, should be 2 or 3"
)
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[
decoder_attention_mask,
decoder_attention_mask.new_ones(
(decoder_attention_mask.shape[0], 1)
),
],
dim=-1,
)
return model_kwargs

View File

@ -10,23 +10,38 @@ from transformers import (
PreTrainedTokenizer,
)
import custom_models
def init_model(model_name: Union[str, os.PathLike]) -> PreTrainedModel:
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
try:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
except ValueError:
model = AutoModel.from_config(config, trust_remote_code=True)
if model_name in custom_models.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
model = custom_models.AutoModelForCausalLM.from_config(config)
elif model_name in custom_models.MODEL_MAPPING_NAMES:
model = custom_models.AutoModel.from_config(config)
else:
try:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
except ValueError:
model = AutoModel.from_config(config, trust_remote_code=True)
return model
def load_model(model_name_or_path: Union[str, os.PathLike]) -> PreTrainedModel:
try:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, trust_remote_code=True
)
except ValueError:
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
if model_name_or_path in custom_models.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
model = custom_models.AutoModelForCausalLM.from_pretrained(model_name_or_path)
elif model_name_or_path in custom_models.MODEL_MAPPING_NAMES:
model = custom_models.AutoModel.from_pretrained(model_name_or_path)
else:
try:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, trust_remote_code=True
)
except ValueError:
model = AutoModel.from_pretrained(
model_name_or_path, trust_remote_code=True
)
return model