Initial Commit
This commit is contained in:
commit
45fa065530
|
@ -0,0 +1,2 @@
|
|||
lightning_logs
|
||||
.env
|
|
@ -0,0 +1,28 @@
|
|||
{
|
||||
// 使用 IntelliSense 了解相关属性。
|
||||
// 悬停以查看现有属性的描述。
|
||||
// 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: train",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "train.py",
|
||||
"args": [
|
||||
"--dataset_name", "wikitext:wikitext-2-v1",
|
||||
],
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": true
|
||||
},
|
||||
{
|
||||
"name": "Python: generate",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "generate.py",
|
||||
"args": [],
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": true
|
||||
}
|
||||
]
|
||||
}
|
|
@ -0,0 +1,94 @@
|
|||
import argparse
|
||||
import os
|
||||
from typing import List, Union
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoModel,
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
PreTrainedModel,
|
||||
PreTrainedTokenizer,
|
||||
)
|
||||
|
||||
|
||||
def load_model(model_name_or_path: Union[str, os.PathLike]) -> PreTrainedModel:
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name_or_path, trust_remote_code=True
|
||||
)
|
||||
except ValueError:
|
||||
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
return model
|
||||
|
||||
|
||||
def load_tokenizer(model_name_or_path: Union[str, os.PathLike]) -> PreTrainedTokenizer:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_or_path, padding_side='left', trust_remote_code=True
|
||||
)
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
return tokenizer
|
||||
|
||||
|
||||
def eval_prompts(
|
||||
model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prompts: List[str]
|
||||
) -> List[str]:
|
||||
inputs = tokenizer(
|
||||
prompts, padding=True, return_tensors='pt', return_attention_mask=True
|
||||
)
|
||||
inputs['position_ids'] = inputs.attention_mask.cumsum(-1) - 1
|
||||
inputs['position_ids'].masked_fill_(inputs.attention_mask == 0, 1)
|
||||
inputs['attention_mask'] = (
|
||||
inputs.attention_mask.unsqueeze(1) * inputs.attention_mask.unsqueeze(2)
|
||||
).tril()
|
||||
inputs = inputs.to(model.device)
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
**inputs,
|
||||
do_sample=False,
|
||||
num_beams=16,
|
||||
max_new_tokens=100,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
early_stopping=True,
|
||||
)
|
||||
completes = tokenizer.batch_decode(
|
||||
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
return completes
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
type=str,
|
||||
help="Name of or path to model",
|
||||
default='gpt2',
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
device = torch.device(0)
|
||||
|
||||
model = load_model(args.model_name_or_path)
|
||||
tokenizer = load_tokenizer(args.model_name_or_path)
|
||||
|
||||
model = model.to(device)
|
||||
prompts = [
|
||||
"Shall I compare thee to a summer's day? Thou art more lovely and more temperate.",
|
||||
"Shall I compare thee to a summer's day? Thou art more lovely and",
|
||||
"Belle! C'est un mot qu'on dirait inventé pour elle.",
|
||||
"Belle! C'est un mot qu'on dirait inventé",
|
||||
"这是一个最好的时代,这是一个最坏的时代。",
|
||||
"这是一个最好的时代,这是一个最坏的",
|
||||
]
|
||||
completes = eval_prompts(model, tokenizer, prompts)
|
||||
|
||||
for prompt, complete in zip(prompts, completes):
|
||||
print("[p]", prompt)
|
||||
print("[c]", complete)
|
|
@ -0,0 +1,5 @@
|
|||
datasets==2.11.0
|
||||
deepspeed==0.9.1
|
||||
pytorch-lightning==2.0.2
|
||||
torch==2.0.0
|
||||
transformers==4.28.1
|
|
@ -0,0 +1,288 @@
|
|||
import argparse
|
||||
import os
|
||||
from functools import cache, partial
|
||||
from itertools import chain
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import datasets
|
||||
import pytorch_lightning as pl
|
||||
import torch
|
||||
import torchmetrics
|
||||
from pytorch_lightning import strategies
|
||||
from torch.utils.data import ConcatDataset, DataLoader
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModel,
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
BatchEncoding,
|
||||
DefaultDataCollator,
|
||||
PreTrainedModel,
|
||||
PreTrainedTokenizer,
|
||||
set_seed,
|
||||
)
|
||||
|
||||
|
||||
def init_model(model_name: Union[str, os.PathLike]) -> PreTrainedModel:
|
||||
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
||||
except ValueError:
|
||||
model = AutoModel.from_config(config, trust_remote_code=True)
|
||||
return model
|
||||
|
||||
|
||||
def load_tokenizer(
|
||||
tokenizer_name_or_path: Union[str, os.PathLike]
|
||||
) -> PreTrainedTokenizer:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_name_or_path, padding_side='left', trust_remote_code=True
|
||||
)
|
||||
if tokenizer.pad_token_id is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
return tokenizer
|
||||
|
||||
|
||||
def split_raw_dataset(
|
||||
raw_dataset: datasets.DatasetDict,
|
||||
) -> Tuple[datasets.Dataset, datasets.Dataset]:
|
||||
if 'validation' in raw_dataset:
|
||||
train_dataset, val_dataset = raw_dataset['train'], raw_dataset['validation']
|
||||
else:
|
||||
raw_dataset = raw_dataset['train'].train_test_split(
|
||||
test_size=0.05, seed=args.seed
|
||||
)
|
||||
train_dataset, val_dataset = raw_dataset['train'], raw_dataset['test']
|
||||
return train_dataset, val_dataset
|
||||
|
||||
|
||||
def process_dataset(
|
||||
dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer
|
||||
) -> datasets.Dataset:
|
||||
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
total_length = (total_length // block_size) * block_size
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
result['labels'] = result['input_ids'].copy()
|
||||
result = BatchEncoding(result)
|
||||
return result
|
||||
|
||||
def tokenize_inputs(
|
||||
examples: Dict[str, list],
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
column_name: str = 'text',
|
||||
) -> BatchEncoding:
|
||||
return tokenizer(examples[column_name], return_attention_mask=False)
|
||||
|
||||
dataset_column_names = list(dataset.features)
|
||||
dataset = dataset.map(
|
||||
partial(
|
||||
tokenize_inputs,
|
||||
tokenizer=tokenizer,
|
||||
column_name=dataset_column_names[0],
|
||||
),
|
||||
batched=True,
|
||||
num_proc=args.num_proc,
|
||||
remove_columns=dataset_column_names,
|
||||
).map(
|
||||
partial(group_texts, block_size=tokenizer.model_max_length),
|
||||
batched=True,
|
||||
num_proc=args.num_proc,
|
||||
)
|
||||
return dataset
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--model_name",
|
||||
type=str,
|
||||
help="Name of or path to model",
|
||||
default='gpt2',
|
||||
)
|
||||
parser.add_argument("--fp16", help="Enable fp16", action="store_true")
|
||||
parser.add_argument("--bf16", help="Enable bf16", action="store_true")
|
||||
parser.add_argument(
|
||||
"--tokenizer_name_or_path",
|
||||
type=str,
|
||||
help="Name of or path to tokenizer",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_name",
|
||||
nargs='+',
|
||||
type=str,
|
||||
help="Name(s) of dataset. To specify a config, pass a <dataset_name>:<dataset_config_name>",
|
||||
default=["wikitext:wikitext-2-v1"],
|
||||
)
|
||||
parser.add_argument(
|
||||
"--train_batch_size",
|
||||
type=int,
|
||||
help="Batch size of training",
|
||||
default=8,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--val_batch_size",
|
||||
type=int,
|
||||
help="Batch size of validating",
|
||||
default=16,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_proc",
|
||||
type=str,
|
||||
help="Number of data processes",
|
||||
default=16,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resume_from_ckpt_path",
|
||||
type=str,
|
||||
help="Checkpoint file path to resume from",
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--seed",
|
||||
type=str,
|
||||
help="Random seed",
|
||||
default=42,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
class LitModule(pl.LightningModule):
|
||||
def __init__(self, model_name: str):
|
||||
super().__init__()
|
||||
self.save_hyperparameters()
|
||||
self.llm = self.register_core_module(init_model(model_name))
|
||||
self.metric_loss = torchmetrics.MeanMetric()
|
||||
self.metric_accuracy = torchmetrics.Accuracy(
|
||||
task='multiclass',
|
||||
num_classes=self.llm.config.vocab_size,
|
||||
)
|
||||
|
||||
@cache
|
||||
def get_tril_matrix(
|
||||
self, block_size: int, batch_size: Optional[int] = None
|
||||
) -> torch.Tensor:
|
||||
matrix = torch.ones(block_size, block_size).tril()
|
||||
if batch_size is not None:
|
||||
matrix = matrix.repeat(batch_size, 1, 1)
|
||||
return matrix
|
||||
|
||||
def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module:
|
||||
object.__setattr__(self, '__core_module__', module)
|
||||
return module
|
||||
|
||||
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
||||
batch_size, block_size = batch['input_ids'].shape
|
||||
batch['attention_mask'] = self.get_tril_matrix(
|
||||
block_size, batch_size=batch_size
|
||||
).to(self.device)
|
||||
outputs = self.llm(**batch, return_dict=True)
|
||||
loss = outputs.loss
|
||||
|
||||
self.log('train_loss', loss, rank_zero_only=True)
|
||||
|
||||
return loss
|
||||
|
||||
def validation_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
||||
outputs = self.llm(**batch, return_dict=True)
|
||||
loss = outputs.loss
|
||||
logits = outputs.logits[..., :-1, :]
|
||||
labels = batch['labels'][..., 1:]
|
||||
|
||||
self.metric_loss.update(loss)
|
||||
|
||||
label_mask = labels != -100
|
||||
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
|
||||
|
||||
def on_validation_epoch_end(self) -> None:
|
||||
self.log('val_loss', self.metric_loss, rank_zero_only=True)
|
||||
self.log('accuracy', self.metric_accuracy, rank_zero_only=True)
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=0.0001)
|
||||
return optimizer
|
||||
|
||||
def configure_callbacks(self):
|
||||
checkpoint_callback = pl.callbacks.ModelCheckpoint(
|
||||
monitor='accuracy',
|
||||
mode='max',
|
||||
filename='{epoch:02d}-{accuracy:.4f}',
|
||||
)
|
||||
early_stop_callback = pl.callbacks.EarlyStopping(
|
||||
monitor='accuracy',
|
||||
min_delta=0.001,
|
||||
patience=3,
|
||||
mode='max',
|
||||
stopping_threshold=1,
|
||||
)
|
||||
return [checkpoint_callback, early_stop_callback]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
if args.tokenizer_name_or_path is None:
|
||||
args.tokenizer_name_or_path = args.model_name
|
||||
|
||||
set_seed(args.seed)
|
||||
|
||||
# lightning module
|
||||
lit_module = LitModule(args.model_name)
|
||||
|
||||
# datasets
|
||||
tokenizer = load_tokenizer(args.tokenizer_name_or_path)
|
||||
train_dataset_list = []
|
||||
val_dataset_list = []
|
||||
for dataset_name in args.dataset_name:
|
||||
dataset_args = dataset_name.split(':')
|
||||
raw_dataset = datasets.load_dataset(*dataset_args)
|
||||
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
|
||||
train_dataset = process_dataset(train_dataset, tokenizer)
|
||||
val_dataset = process_dataset(val_dataset, tokenizer)
|
||||
train_dataset_list.append(train_dataset)
|
||||
val_dataset_list.append(val_dataset)
|
||||
train_dataset = ConcatDataset(train_dataset_list)
|
||||
val_dataset = ConcatDataset(val_dataset_list)
|
||||
|
||||
# dataloaders
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=args.train_batch_size,
|
||||
num_workers=args.num_proc,
|
||||
collate_fn=DefaultDataCollator(),
|
||||
shuffle=True,
|
||||
)
|
||||
val_dataloader = DataLoader(
|
||||
val_dataset,
|
||||
batch_size=args.val_batch_size,
|
||||
num_workers=args.num_proc,
|
||||
collate_fn=DefaultDataCollator(),
|
||||
)
|
||||
|
||||
# trainer
|
||||
torch.set_float32_matmul_precision('medium')
|
||||
if args.bf16:
|
||||
precision = 'bf16-mixed'
|
||||
elif args.fp16:
|
||||
precision = '16-mixed'
|
||||
else:
|
||||
precision = "32-true"
|
||||
lit_trainer = pl.Trainer(
|
||||
accelerator='gpu',
|
||||
precision=precision,
|
||||
log_every_n_steps=5,
|
||||
accumulate_grad_batches=32,
|
||||
strategy=strategies.DeepSpeedStrategy(stage=3),
|
||||
)
|
||||
lit_trainer.fit(
|
||||
lit_module,
|
||||
train_dataloaders=train_dataloader,
|
||||
val_dataloaders=val_dataloader,
|
||||
ckpt_path=args.resume_from_ckpt_path,
|
||||
)
|
Loading…
Reference in New Issue