[feature] new arg use_tril_attention_mask
This commit is contained in:
parent
0324eb4103
commit
939be31c10
32
generate.py
32
generate.py
|
@ -32,16 +32,20 @@ def load_tokenizer(model_name_or_path: Union[str, os.PathLike]) -> PreTrainedTok
|
|||
|
||||
|
||||
def eval_prompts(
|
||||
model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prompts: List[str]
|
||||
model: PreTrainedModel,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
prompts: List[str],
|
||||
use_tril_attention_mask: bool = False,
|
||||
) -> List[str]:
|
||||
inputs = tokenizer(
|
||||
prompts, padding=True, return_tensors='pt', return_attention_mask=True
|
||||
)
|
||||
inputs['position_ids'] = inputs.attention_mask.cumsum(-1) - 1
|
||||
inputs['position_ids'].masked_fill_(inputs.attention_mask == 0, 1)
|
||||
inputs['attention_mask'] = (
|
||||
inputs.attention_mask.unsqueeze(1) * inputs.attention_mask.unsqueeze(2)
|
||||
).tril()
|
||||
if use_tril_attention_mask:
|
||||
inputs['attention_mask'] = (
|
||||
inputs.attention_mask.unsqueeze(1) * inputs.attention_mask.unsqueeze(2)
|
||||
).tril()
|
||||
inputs = inputs.to(model.device)
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
|
@ -66,6 +70,17 @@ def parse_args():
|
|||
help="Name of or path to model",
|
||||
default='gpt2',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_tril_attention_mask",
|
||||
help="Use tril attention mask during training",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_name_or_path",
|
||||
type=str,
|
||||
help="Name of or path to tokenizer",
|
||||
default=None,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
@ -73,10 +88,13 @@ def parse_args():
|
|||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
if args.tokenizer_name_or_path is None:
|
||||
args.tokenizer_name_or_path = args.model_name_or_path
|
||||
|
||||
device = torch.device(0)
|
||||
|
||||
model = load_model(args.model_name_or_path)
|
||||
tokenizer = load_tokenizer(args.model_name_or_path)
|
||||
tokenizer = load_tokenizer(args.tokenizer_name_or_path)
|
||||
|
||||
model = model.to(device)
|
||||
prompts = [
|
||||
|
@ -87,7 +105,9 @@ if __name__ == '__main__':
|
|||
"这是一个最好的时代,这是一个最坏的时代。",
|
||||
"这是一个最好的时代,这是一个最坏的",
|
||||
]
|
||||
completes = eval_prompts(model, tokenizer, prompts)
|
||||
completes = eval_prompts(
|
||||
model, tokenizer, prompts, use_tril_attention_mask=args.use_tril_attention_mask
|
||||
)
|
||||
|
||||
for prompt, complete in zip(prompts, completes):
|
||||
print("[p]", prompt)
|
||||
|
|
19
train.py
19
train.py
|
@ -103,6 +103,11 @@ def parse_args():
|
|||
help="Name of or path to model",
|
||||
default='gpt2',
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_tril_attention_mask",
|
||||
help="Use tril attention mask during training",
|
||||
action="store_true",
|
||||
)
|
||||
parser.add_argument("--fp16", help="Enable fp16", action="store_true")
|
||||
parser.add_argument("--bf16", help="Enable bf16", action="store_true")
|
||||
parser.add_argument(
|
||||
|
@ -165,10 +170,11 @@ def parse_args():
|
|||
|
||||
|
||||
class LitModule(pl.LightningModule):
|
||||
def __init__(self, model_name: str):
|
||||
def __init__(self, model_name: str, use_tril_attention_mask: str = False):
|
||||
super().__init__()
|
||||
self.save_hyperparameters()
|
||||
self.llm = self.register_core_module(init_model(model_name))
|
||||
self.use_tril_attention_mask = use_tril_attention_mask
|
||||
self.metric_loss = torchmetrics.MeanMetric()
|
||||
self.metric_accuracy = torchmetrics.Accuracy(
|
||||
task='multiclass',
|
||||
|
@ -176,7 +182,7 @@ class LitModule(pl.LightningModule):
|
|||
)
|
||||
|
||||
@cache
|
||||
def get_tril_matrix(
|
||||
def get_batch_tril_matrix(
|
||||
self, block_size: int, batch_size: Optional[int] = None
|
||||
) -> torch.Tensor:
|
||||
matrix = torch.ones(block_size, block_size).tril()
|
||||
|
@ -190,9 +196,10 @@ class LitModule(pl.LightningModule):
|
|||
|
||||
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
||||
batch_size, block_size = batch['input_ids'].shape
|
||||
batch['attention_mask'] = self.get_tril_matrix(
|
||||
block_size, batch_size=batch_size
|
||||
).to(self.device)
|
||||
if self.use_tril_attention_mask:
|
||||
batch['attention_mask'] = self.get_batch_tril_matrix(
|
||||
block_size, batch_size=batch_size
|
||||
).to(self.device)
|
||||
outputs = self.llm(**batch, return_dict=True)
|
||||
loss = outputs.loss
|
||||
|
||||
|
@ -244,7 +251,7 @@ if __name__ == '__main__':
|
|||
set_seed(args.seed)
|
||||
|
||||
# lightning module
|
||||
lit_module = LitModule(args.model_name)
|
||||
lit_module = LitModule(args.model_name, args.use_tril_attention_mask)
|
||||
|
||||
# datasets
|
||||
tokenizer = load_tokenizer(args.tokenizer_name_or_path)
|
||||
|
|
Loading…
Reference in New Issue