set use local dataset.

This commit is contained in:
Colin 2024-02-24 13:44:22 +08:00
parent 087366c59b
commit ac61c4d925
2 changed files with 18 additions and 21 deletions

View File

@ -8,9 +8,8 @@ import torchmetrics
from utils import init_model
from custom_models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers import (
AutoConfig
)
from transformers import AutoConfig
class LitModule(pl.LightningModule):
def __init__(
@ -33,7 +32,7 @@ class LitModule(pl.LightningModule):
self.use_tril_attention_mask = use_tril_attention_mask
self.metric_loss = torchmetrics.MeanMetric()
self.metric_accuracy = torchmetrics.Accuracy(
task='multiclass',
task="multiclass",
num_classes=self.llm.config.vocab_size,
)
@ -45,17 +44,17 @@ class LitModule(pl.LightningModule):
return matrix
def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module:
object.__setattr__(self, '__core_module__', module)
object.__setattr__(self, "__core_module__", module)
return module
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
batch_size, block_size = batch['input_ids'].shape
batch_size, block_size = batch["input_ids"].shape
if self.use_tril_attention_mask:
batch['attention_mask'] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device)
batch["attention_mask"] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device)
outputs = self.llm(**batch, return_dict=True)
loss = outputs.loss
self.log('train_loss', loss, rank_zero_only=True)
self.log("train_loss", loss, rank_zero_only=True)
return loss
@ -63,7 +62,7 @@ class LitModule(pl.LightningModule):
outputs = self.llm(**batch, return_dict=True)
loss = outputs.loss
logits = outputs.logits[..., :-1, :]
labels = batch['labels'][..., 1:]
labels = batch["labels"][..., 1:]
self.metric_loss.update(loss)
@ -71,8 +70,8 @@ class LitModule(pl.LightningModule):
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
def on_validation_epoch_end(self) -> None:
self.log('val_loss', self.metric_loss, rank_zero_only=True)
self.log('accuracy', self.metric_accuracy, rank_zero_only=True)
self.log("val_loss", self.metric_loss, rank_zero_only=True)
self.log("accuracy", self.metric_accuracy, rank_zero_only=True)
def configure_optimizers(self):
strategy = self.trainer.strategy
@ -92,15 +91,15 @@ class LitModule(pl.LightningModule):
def configure_callbacks(self):
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor='accuracy',
mode='max',
filename='{epoch:02d}-{accuracy:.4f}',
monitor="accuracy",
mode="max",
filename="{epoch:02d}-{accuracy:.4f}",
)
early_stop_callback = pl.callbacks.EarlyStopping(
monitor='accuracy',
monitor="accuracy",
min_delta=0.001,
patience=3,
mode='max',
mode="max",
stopping_threshold=1,
)
return [checkpoint_callback, early_stop_callback]

View File

@ -187,9 +187,7 @@ if __name__ == "__main__":
val_dataset_list = []
for dataset_name in args.dataset_name:
dataset_args = dataset_name.split(":")
raw_dataset = datasets.load_dataset(
"json", data_files="/home/colin/develop/dataset/liwu/MNBVC/wiki/20230197/0.jsonl.gz"
)
raw_dataset = datasets.load_dataset("json", data_files="./dataset/58.jsonl.gz")
# raw_dataset = datasets.load_dataset(*dataset_args)
train_dataset, val_dataset = split_raw_dataset(raw_dataset)
train_dataset = process_dataset(train_dataset, tokenizer)