Compare commits

...

10 Commits

Author SHA1 Message Date
Colin 7d16743184 enable pretrain. 2024-02-22 15:03:32 +08:00
周以晴 b655153ec7
Merge pull request #2 from Yiqing-Zhou/fix-custom-models
[fix] fix genarate with custom models does not go to custom_models
2023-05-28 22:58:51 +08:00
yiqing-zhou 9f8f9ecc89 [fix] fix genarate with custom models does not go to custom_models 2023-05-28 22:57:51 +08:00
周以晴 e8d543558c
Merge pull request #1 from Yiqing-Zhou/custom-model-configs
[feature] custom model configs
2023-05-28 21:48:24 +08:00
yiqing-zhou fcb93e52c4 [feature] custom model configs 2023-05-28 21:39:51 +08:00
yiqing-zhou b76d333f39 [code] formatter-caused changes 2023-05-28 20:02:56 +08:00
周以晴 10a88a5012
Update README.md 2023-05-14 23:08:44 +08:00
Yiqing-Zhou 30df20402d [code] update .vscode launch.json 2023-05-14 22:55:01 +08:00
Yiqing-Zhou 6827898339 . 2023-05-14 22:53:28 +08:00
Yiqing-Zhou 216bc4643c [feature] custom_models 2023-05-14 22:23:16 +08:00
10 changed files with 512 additions and 72 deletions

18
.vscode/launch.json vendored
View File

@ -4,25 +4,15 @@
// 访: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Python: train",
"type": "python",
"request": "launch",
"program": "train.py",
"args": [
"--dataset_name", "wikitext:wikitext-2-v1",
],
"console": "integratedTerminal",
"justMyCode": true
},
{
"name": "Python: generate",
"type": "python",
"type": "debugpy",
"request": "launch",
"program": "generate.py",
"program": "${file}",
"args": [],
"cwd": "${fileDirname}",
"console": "integratedTerminal",
"justMyCode": true
"justMyCode": false
}
]
}

View File

@ -1,9 +1,51 @@
# GPT-Pretrain
## Usage
# Usage
## Make it simple
```
python lit_train.py --model_name gpt2
python lit_train.py --model_name gpt2 --use_tril_attention_mask
python lit_export.py --version 0
python generate.py --model_name_or_path exports/version_0 --tokenizer_name_or_path gpt2
```
> :memo: **Note:** Training with a "--use_tril_attention_mask" is recommended. However, huggingface model implementions might not support 2D attention mask. You may write a custom model to support 2D attention mask, just like what I did in [custom_models/gpt2](https://github.com/Yiqing-Zhou/gpt-pretrain/tree/main/custom_models/gpt2).
## Train on multiple GPUs
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --strategy fsdp # default and recommended
```
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --strategy deepspeed
```
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --strategy ddp
```
## Reduce CUDA memory cost
- half precision
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --bf16
```
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --fp16
```
- smaller batch size & accumulate grad batches
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --bf16 \
--train_batch_size 2 --val_batch_size 4 --accumulate_grad_batches 128
```
- cpu_offload
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --bf16 \
--strategy fsdp_cpu_offload
```
```
python lit_train.py --model_name gpt2 --use_tril_attention_mask --bf16 \
--strategy deepspeed_stage_3_offload
```

60
custom_models/__init__.py Normal file
View File

@ -0,0 +1,60 @@
import importlib
from collections import OrderedDict
from transformers.models.auto import auto_factory, configuration_auto
CONFIG_MAPPING_NAMES = OrderedDict([])
def register_custom_configs():
for model_type, map_name in CONFIG_MAPPING_NAMES.items():
module_name = configuration_auto.model_type_to_module_name(model_type)
module = importlib.import_module(f".{module_name}", "custom_models")
mapping = getattr(module, map_name)
configuration_auto.AutoConfig.register(model_type, mapping)
class _LazyAutoMapping(auto_factory._LazyAutoMapping):
def _load_attr_from_module(self, model_type, attr):
module_name = auto_factory.model_type_to_module_name(model_type)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "custom_models")
return auto_factory.getattribute_from_module(self._modules[module_name], attr)
MODEL_MAPPING_NAMES = OrderedDict(
[
("gpt2", "GPT2Model"),
]
)
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
[
("gpt2", "GPT2LMHeadModel"),
]
)
MODEL_MAPPING = _LazyAutoMapping(
{**configuration_auto.CONFIG_MAPPING_NAMES, **CONFIG_MAPPING_NAMES}, MODEL_MAPPING_NAMES
)
MODEL_FOR_CAUSAL_LM_MAPPING = _LazyAutoMapping(
{**configuration_auto.CONFIG_MAPPING_NAMES, **CONFIG_MAPPING_NAMES}, MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
)
class AutoModel(auto_factory._BaseAutoModelClass):
_model_mapping = MODEL_MAPPING
AutoModel = auto_factory.auto_class_update(AutoModel)
class AutoModelForCausalLM(auto_factory._BaseAutoModelClass):
_model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
AutoModelForCausalLM = auto_factory.auto_class_update(AutoModelForCausalLM)

View File

@ -0,0 +1 @@
from .modeling_gpt2 import GPT2LMHeadModel, GPT2Model

View File

@ -0,0 +1,355 @@
"""Override transformers GPT2 to support tril attention mask"""
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
import transformers
from torch import nn
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.models.gpt2.modeling_gpt2 import (
_CHECKPOINT_FOR_DOC,
_CONFIG_FOR_DOC,
GPT2_INPUTS_DOCSTRING,
logger,
)
from transformers.utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings_to_model_forward,
)
class GPT2Model(transformers.models.gpt2.GPT2Model):
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(
past_length,
input_shape[-1] + past_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
if attention_mask.dim() == 2:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, None, ...]
else:
raise ValueError(f"attention_mask.dim() is {attention_mask.dim()}, should be 2 or 3")
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
(
encoder_batch_size,
encoder_sequence_length,
_,
) = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
presents,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class GPT2LMHeadModel(transformers.models.gpt2.GPT2LMHeadModel):
def __init__(self, config):
super().__init__(config)
self.transformer = GPT2Model(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
token_type_ids = kwargs.get("token_type_ids", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
if token_type_ids is not None:
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
)
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
# update position_ids
if "position_ids" in model_kwargs:
position_ids = model_kwargs["position_ids"]
if model_kwargs["past_key_values"] is not None:
model_kwargs["position_ids"] = (position_ids[:, -1] + 1).unsqueeze(-1)
else:
model_kwargs["position_ids"] = torch.cat(
[position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=-1
)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
if attention_mask.dim() == 2:
model_kwargs["attention_mask"] = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
elif attention_mask.dim() == 3:
attention_mask = attention_mask[:, -1, :]
attention_mask = torch.cat(
[
attention_mask,
attention_mask.new_ones((attention_mask.shape[0], 1)),
],
dim=-1,
)
model_kwargs["attention_mask"] = attention_mask
else:
raise ValueError(f"attention_mask.dim() is {attention_mask.dim()}, should be 2 or 3")
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[
decoder_attention_mask,
decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1)),
],
dim=-1,
)
return model_kwargs

View File

@ -13,15 +13,11 @@ def eval_prompts(
prompts: List[str],
use_tril_attention_mask: bool = False,
) -> List[str]:
inputs = tokenizer(
prompts, padding=True, return_tensors='pt', return_attention_mask=True
)
inputs = tokenizer(prompts, padding=True, return_tensors='pt', return_attention_mask=True)
inputs['position_ids'] = inputs.attention_mask.cumsum(-1) - 1
inputs['position_ids'].masked_fill_(inputs.attention_mask == 0, 1)
if use_tril_attention_mask:
inputs['attention_mask'] = (
inputs.attention_mask.unsqueeze(1) * inputs.attention_mask.unsqueeze(2)
).tril()
inputs['attention_mask'] = (inputs.attention_mask.unsqueeze(1) * inputs.attention_mask.unsqueeze(2)).tril()
inputs = inputs.to(model.device)
with torch.inference_mode():
output_ids = model.generate(
@ -32,9 +28,7 @@ def eval_prompts(
eos_token_id=tokenizer.eos_token_id,
early_stopping=True,
)
completes = tokenizer.batch_decode(
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
completes = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
return completes
@ -81,9 +75,7 @@ if __name__ == '__main__':
"这是一个最好的时代,这是一个最坏的时代。",
"这是一个最好的时代,这是一个最坏的",
]
completes = eval_prompts(
model, tokenizer, prompts, use_tril_attention_mask=args.use_tril_attention_mask
)
completes = eval_prompts(model, tokenizer, prompts, use_tril_attention_mask=args.use_tril_attention_mask)
for prompt, complete in zip(prompts, completes):
print("[p]", prompt)

View File

@ -26,8 +26,6 @@ if __name__ == '__main__':
checkpoint_file_path = next(lightning_logs_dir_path.glob("checkpoints/*.ckpt"))
lit_module = LitModule.load_from_checkpoint(
checkpoint_file_path, map_location='cpu'
)
lit_module = LitModule.load_from_checkpoint(checkpoint_file_path, map_location='cpu')
model: PreTrainedModel = lit_module.__core_module__
model.save_pretrained(exports_dir_path)

View File

@ -27,9 +27,7 @@ class LitModule(pl.LightningModule):
)
@cache
def get_batch_tril_matrix(
self, block_size: int, batch_size: Optional[int] = None
) -> torch.Tensor:
def get_batch_tril_matrix(self, block_size: int, batch_size: Optional[int] = None) -> torch.Tensor:
matrix = torch.ones(block_size, block_size).tril()
if batch_size is not None:
matrix = matrix.repeat(batch_size, 1, 1)
@ -42,9 +40,7 @@ class LitModule(pl.LightningModule):
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
batch_size, block_size = batch['input_ids'].shape
if self.use_tril_attention_mask:
batch['attention_mask'] = self.get_batch_tril_matrix(
block_size, batch_size=batch_size
).to(self.device)
batch['attention_mask'] = self.get_batch_tril_matrix(block_size, batch_size=batch_size).to(self.device)
outputs = self.llm(**batch, return_dict=True)
loss = outputs.loss
@ -80,9 +76,7 @@ class LitModule(pl.LightningModule):
self.trainer.model.parameters(), lr=self.learning_rate
)
return optimizer
optimizer = torch.optim.AdamW(
self.trainer.model.parameters(), lr=self.learning_rate
)
optimizer = torch.optim.AdamW(self.trainer.model.parameters(), lr=self.learning_rate)
return optimizer
def configure_callbacks(self):

View File

@ -25,16 +25,12 @@ def split_raw_dataset(
if 'validation' in raw_dataset:
train_dataset, val_dataset = raw_dataset['train'], raw_dataset['validation']
else:
raw_dataset = raw_dataset['train'].train_test_split(
test_size=0.05, seed=args.seed
)
raw_dataset = raw_dataset['train'].train_test_split(test_size=0.05, seed=args.seed)
train_dataset, val_dataset = raw_dataset['train'], raw_dataset['test']
return train_dataset, val_dataset
def process_dataset(
dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer
) -> datasets.Dataset:
def process_dataset(dataset: datasets.Dataset, tokenizer: PreTrainedTokenizer) -> datasets.Dataset:
def group_texts(examples: Dict[str, list], block_size: int = 512) -> BatchEncoding:
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
@ -110,13 +106,13 @@ def parse_args():
"--train_batch_size",
type=int,
help="Batch size of training",
default=8,
default=2,
)
parser.add_argument(
"--val_batch_size",
type=int,
help="Batch size of validating",
default=16,
default=2,
)
parser.add_argument(
"--accumulate_grad_batches",
@ -128,7 +124,7 @@ def parse_args():
"--num_proc",
type=str,
help="Number of data processes",
default=16,
default=1,
)
parser.add_argument(
"--max_epochs",
@ -140,7 +136,7 @@ def parse_args():
"--strategy",
type=str,
help="Name of pytorch lightning distribution strategy",
default='fsdp',
default='ddp',
)
parser.add_argument(
"--resume_from_ckpt_path",
@ -167,9 +163,7 @@ if __name__ == '__main__':
set_seed(args.seed)
# lightning module
lit_module = LitModule(
args.model_name, args.learning_rate, args.use_tril_attention_mask
)
lit_module = LitModule(args.model_name, args.learning_rate, args.use_tril_attention_mask)
# datasets
tokenizer = load_tokenizer(args.tokenizer_name_or_path)
@ -203,8 +197,11 @@ if __name__ == '__main__':
persistent_workers=True,
)
ne = next(train_dataloader._get_iterator())
print((ne["input_ids"]-ne["labels"]).numpy().tolist())
# trainer
apply_all_patches()
# apply_all_patches()
torch.set_float32_matmul_precision('medium')
if args.bf16:
precision = 'bf16-mixed'

View File

@ -10,32 +10,43 @@ from transformers import (
PreTrainedTokenizer,
)
import custom_models
def init_model(model_name: Union[str, os.PathLike]) -> PreTrainedModel:
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
try:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
except ValueError:
model = AutoModel.from_config(config, trust_remote_code=True)
custom_models.register_custom_configs()
def init_model(model_name: str) -> PreTrainedModel:
config = AutoConfig.for_model(model_type=model_name)
if model_name in custom_models.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
model = custom_models.AutoModelForCausalLM.from_config(config)
elif model_name in custom_models.MODEL_MAPPING_NAMES:
model = custom_models.AutoModel.from_config(config)
else:
try:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
except ValueError:
model = AutoModel.from_config(config, trust_remote_code=True)
return model
def load_model(model_name_or_path: Union[str, os.PathLike]) -> PreTrainedModel:
try:
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, trust_remote_code=True
)
except ValueError:
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_name_or_path)
if config.model_type in custom_models.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
model = custom_models.AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config)
elif config.model_type in custom_models.MODEL_MAPPING_NAMES:
model = custom_models.AutoModel.from_pretrained(model_name_or_path, config=config)
else:
try:
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, config=config, trust_remote_code=True)
except ValueError:
model = AutoModel.from_pretrained(model_name_or_path, config=config, trust_remote_code=True)
return model
def load_tokenizer(
tokenizer_name_or_path: Union[str, os.PathLike]
) -> PreTrainedTokenizer:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path, padding_side='left', trust_remote_code=True
)
def load_tokenizer(tokenizer_name_or_path: Union[str, os.PathLike]) -> PreTrainedTokenizer:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, padding_side='left', trust_remote_code=True)
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer