102 lines
3.5 KiB
Python
102 lines
3.5 KiB
Python
from functools import cache
|
|
from typing import Dict, Optional
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
import torchmetrics
|
|
|
|
from utils import init_model
|
|
|
|
|
|
class LitModule(pl.LightningModule):
|
|
def __init__(
|
|
self,
|
|
model_name: str,
|
|
learning_rate: float = 0.0001,
|
|
use_tril_attention_mask: str = False,
|
|
):
|
|
super().__init__()
|
|
self.save_hyperparameters()
|
|
self.llm = self.register_core_module(init_model(model_name))
|
|
self.learning_rate = learning_rate
|
|
self.use_tril_attention_mask = use_tril_attention_mask
|
|
self.metric_loss = torchmetrics.MeanMetric()
|
|
self.metric_accuracy = torchmetrics.Accuracy(
|
|
task='multiclass',
|
|
num_classes=self.llm.config.vocab_size,
|
|
)
|
|
|
|
@cache
|
|
def get_batch_tril_matrix(
|
|
self, block_size: int, batch_size: Optional[int] = None
|
|
) -> torch.Tensor:
|
|
matrix = torch.ones(block_size, block_size).tril()
|
|
if batch_size is not None:
|
|
matrix = matrix.repeat(batch_size, 1, 1)
|
|
return matrix
|
|
|
|
def register_core_module(self, module: torch.nn.Module) -> torch.nn.Module:
|
|
object.__setattr__(self, '__core_module__', module)
|
|
return module
|
|
|
|
def training_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
|
batch_size, block_size = batch['input_ids'].shape
|
|
if self.use_tril_attention_mask:
|
|
batch['attention_mask'] = self.get_batch_tril_matrix(
|
|
block_size, batch_size=batch_size
|
|
).to(self.device)
|
|
outputs = self.llm(**batch, return_dict=True)
|
|
loss = outputs.loss
|
|
|
|
self.log('train_loss', loss, rank_zero_only=True)
|
|
|
|
return loss
|
|
|
|
def validation_step(self, batch: Dict[str, torch.Tensor], batch_idx):
|
|
outputs = self.llm(**batch, return_dict=True)
|
|
loss = outputs.loss
|
|
logits = outputs.logits[..., :-1, :]
|
|
labels = batch['labels'][..., 1:]
|
|
|
|
self.metric_loss.update(loss)
|
|
|
|
label_mask = labels != -100
|
|
self.metric_accuracy.update(logits[label_mask], labels[label_mask])
|
|
|
|
def on_validation_epoch_end(self) -> None:
|
|
self.log('val_loss', self.metric_loss, rank_zero_only=True)
|
|
self.log('accuracy', self.metric_accuracy, rank_zero_only=True)
|
|
|
|
def configure_optimizers(self):
|
|
strategy = self.trainer.strategy
|
|
if isinstance(strategy, pl.strategies.DeepSpeedStrategy):
|
|
assert "optimizer" not in strategy.config
|
|
zero_config = strategy.config.get("zero_optimization")
|
|
if zero_config is not None:
|
|
if "offload_optimizer" in zero_config:
|
|
import deepspeed
|
|
|
|
optimizer = deepspeed.ops.adam.DeepSpeedCPUAdam(
|
|
self.trainer.model.parameters(), lr=self.learning_rate
|
|
)
|
|
return optimizer
|
|
optimizer = torch.optim.AdamW(
|
|
self.trainer.model.parameters(), lr=self.learning_rate
|
|
)
|
|
return optimizer
|
|
|
|
def configure_callbacks(self):
|
|
checkpoint_callback = pl.callbacks.ModelCheckpoint(
|
|
monitor='accuracy',
|
|
mode='max',
|
|
filename='{epoch:02d}-{accuracy:.4f}',
|
|
)
|
|
early_stop_callback = pl.callbacks.EarlyStopping(
|
|
monitor='accuracy',
|
|
min_delta=0.001,
|
|
patience=3,
|
|
mode='max',
|
|
stopping_threshold=1,
|
|
)
|
|
return [checkpoint_callback, early_stop_callback]
|