#include "Crypto.h" #include #include #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #endif /****************************** MACROS ******************************/ #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b)))) #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b)))) // -------------------------------------------------- BASE64 -------------------------------------------------- // /****************************** MACROS ******************************/ #define NEWLINE_INVL 76 /**************************** VARIABLES *****************************/ // Note: To change the charset to a URL encoding, replace the '+' and '/' with '*' and '-' static const BYTE charset[]={"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"}; /*********************** FUNCTION DEFINITIONS ***********************/ BYTE revchar(char ch) { if (ch >= 'A' && ch <= 'Z') ch -= 'A'; else if (ch >= 'a' && ch <='z') ch = ch - 'a' + 26; else if (ch >= '0' && ch <='9') ch = ch - '0' + 52; else if (ch == '+') ch = 62; else if (ch == '/') ch = 63; return(ch); } size_t base64_encode(const BYTE in[], BYTE out[], size_t len, int newline_flag) { size_t idx, idx2, blks, blk_ceiling, left_over, newline_count = 0; blks = (len / 3); left_over = len % 3; if (out == nullptr) { idx2 = blks * 4 ; if (left_over) idx2 += 4; if (newline_flag) idx2 += len / 57; // (NEWLINE_INVL / 4) * 3 = 57. One newline per 57 input bytes. } else { // Since 3 input bytes = 4 output bytes, determine out how many even sets of // 3 bytes the input has. blk_ceiling = blks * 3; for (idx = 0, idx2 = 0; idx < blk_ceiling; idx += 3, idx2 += 4) { out[idx2] = charset[in[idx] >> 2]; out[idx2 + 1] = charset[((in[idx] & 0x03) << 4) | (in[idx + 1] >> 4)]; out[idx2 + 2] = charset[((in[idx + 1] & 0x0f) << 2) | (in[idx + 2] >> 6)]; out[idx2 + 3] = charset[in[idx + 2] & 0x3F]; // The offical standard requires a newline every 76 characters. // (Eg, first newline is character 77 of the output.) if (((idx2 - newline_count + 4) % NEWLINE_INVL == 0) && newline_flag) { out[idx2 + 4] = '\n'; idx2++; newline_count++; } } if (left_over == 1) { out[idx2] = charset[in[idx] >> 2]; out[idx2 + 1] = charset[(in[idx] & 0x03) << 4]; out[idx2 + 2] = '='; out[idx2 + 3] = '='; idx2 += 4; } else if (left_over == 2) { out[idx2] = charset[in[idx] >> 2]; out[idx2 + 1] = charset[((in[idx] & 0x03) << 4) | (in[idx + 1] >> 4)]; out[idx2 + 2] = charset[(in[idx + 1] & 0x0F) << 2]; out[idx2 + 3] = '='; idx2 += 4; } } return(idx2); } size_t base64_decode(const BYTE in[], BYTE out[], size_t len) { size_t idx, idx2, blks, blk_ceiling, left_over; if (in[len - 1] == '=') len--; if (in[len - 1] == '=') len--; blks = len / 4; left_over = len % 4; if (out == nullptr) { if (len >= 77 && in[NEWLINE_INVL] == '\n') // Verify that newlines where used. len -= len / (NEWLINE_INVL + 1); blks = len / 4; left_over = len % 4; idx = blks * 3; if (left_over == 2) idx ++; else if (left_over == 3) idx += 2; } else { blk_ceiling = blks * 4; for (idx = 0, idx2 = 0; idx2 < blk_ceiling; idx += 3, idx2 += 4) { if (in[idx2] == '\n') idx2++; out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4); out[idx + 1] = (revchar(in[idx2 + 1]) << 4) | (revchar(in[idx2 + 2]) >> 2); out[idx + 2] = (revchar(in[idx2 + 2]) << 6) | revchar(in[idx2 + 3]); } if (left_over == 2) { out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4); idx++; } else if (left_over == 3) { out[idx] = (revchar(in[idx2]) << 2) | ((revchar(in[idx2 + 1]) & 0x30) >> 4); out[idx + 1] = (revchar(in[idx2 + 1]) << 4) | (revchar(in[idx2 + 2]) >> 2); idx += 2; } } return(idx); } // -------------------------------------------------- URL -------------------------------------------------- // #define HEX_CHAR_TO_VALUE(c) (c <= '9' ? c - '0' : (c <= 'F' ? c - 'A' + 0x0A : c - 'a' + 0X0A)) #define HEX_DOUBLE_CHAR_TO_VALUE(pc) (((HEX_CHAR_TO_VALUE(*(pc))) << 4) | (HEX_CHAR_TO_VALUE(*(pc + 1)))) #define HEX_VALUE_TO_CHAR(n) (n <= 9 ? n + '0' : (n <= 'F' ? n + 'A' - 0X0A : n + 'a' - 0X0A)) #define HEX_VALUE_TO_DOUBLE_CHAR(pc, n) {*(pc) = HEX_VALUE_TO_CHAR((n >> 4)); *((pc) + 1) = HEX_VALUE_TO_CHAR((n & 0X0F));} int url_encode(const char* src, const int src_size, char* dest, const int dest_size) { if(src == nullptr || dest == nullptr || src_size <= 0 || dest_size <= 0) return 0; char ch; int j = 0; for(int i = 0; (i < src_size) && (j < dest_size); ++i) { ch = src[i]; if (((ch>='A') && (ch<'Z')) || ((ch>='a') && (ch<'z')) || ((ch>='0') && (ch<'9')) || (ch == '.' || ch == '-' || ch == '_' || ch == '*')) dest[j++] = ch; else if(ch == ' ') dest[j++] = '+'; else { if(j + 3 < dest_size) { dest[j++] = '%'; HEX_VALUE_TO_DOUBLE_CHAR(dest + j, ch); j += 2; } else return 0; } } dest[j] = '\0'; return j; } int url_decode(const char* src, const int src_size, char* dest, const int dest_size) { if(src == nullptr || dest == nullptr || src_size <= 0 || dest_size <= 0) return 0; char ch; int j = 0; for(int i = 0; i < src_size && j < dest_size; ++i) { ch = src[i]; if(ch == '+') dest[j++] = ' '; else if(ch == '%') { if(i + 2 < src_size) { dest[j++] = HEX_DOUBLE_CHAR_TO_VALUE(src + i + 1); i += 2; } } else dest[j++] = ch; } dest[j] = 0; return j; } // -------------------------------------------------- AES -------------------------------------------------- // /****************************** MACROS ******************************/ // The least significant byte of the word is rotated to the end. #define KE_ROTWORD(x) (((x) << 8) | ((x) >> 24)) /**************************** DATA TYPES ****************************/ #define AES_128_ROUNDS 10 #define AES_192_ROUNDS 12 #define AES_256_ROUNDS 14 /*********************** FUNCTION DECLARATIONS **********************/ void ccm_prepare_first_ctr_blk(BYTE counter[], const BYTE nonce[], int nonce_len, int payload_len_store_size); void ccm_prepare_first_format_blk(BYTE buf[], int assoc_len, int payload_len, int payload_len_store_size, int mac_len, const BYTE nonce[], int nonce_len); void ccm_format_assoc_data(BYTE buf[], int *end_of_buf, const BYTE assoc[], int assoc_len); void ccm_format_payload_data(BYTE buf[], int *end_of_buf, const BYTE payload[], int payload_len); /**************************** VARIABLES *****************************/ // This is the specified AES SBox. To look up a substitution value, put the first // nibble in the first index (row) and the second nibble in the second index (column). static const BYTE aes_sbox[16][16] = { {0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76}, {0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0}, {0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15}, {0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75}, {0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84}, {0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF}, {0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8}, {0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2}, {0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73}, {0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB}, {0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79}, {0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08}, {0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A}, {0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E}, {0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF}, {0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16} }; static const BYTE aes_invsbox[16][16] = { {0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB}, {0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB}, {0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E}, {0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25}, {0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92}, {0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84}, {0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06}, {0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B}, {0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73}, {0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E}, {0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B}, {0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4}, {0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F}, {0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF}, {0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61}, {0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D} }; // This table stores pre-calculated values for all possible GF(2^8) calculations.This // table is only used by the (Inv)MixColumns steps. // USAGE: The second index (column) is the coefficient of multiplication. Only 7 different // coefficients are used: 0x01, 0x02, 0x03, 0x09, 0x0b, 0x0d, 0x0e, but multiplication by // 1 is negligible leaving only 6 coefficients. Each column of the table is devoted to one // of these coefficients, in the ascending order of value, from values 0x00 to 0xFF. static const BYTE gf_mul[256][6] = { {0x00,0x00,0x00,0x00,0x00,0x00},{0x02,0x03,0x09,0x0b,0x0d,0x0e}, {0x04,0x06,0x12,0x16,0x1a,0x1c},{0x06,0x05,0x1b,0x1d,0x17,0x12}, {0x08,0x0c,0x24,0x2c,0x34,0x38},{0x0a,0x0f,0x2d,0x27,0x39,0x36}, {0x0c,0x0a,0x36,0x3a,0x2e,0x24},{0x0e,0x09,0x3f,0x31,0x23,0x2a}, {0x10,0x18,0x48,0x58,0x68,0x70},{0x12,0x1b,0x41,0x53,0x65,0x7e}, {0x14,0x1e,0x5a,0x4e,0x72,0x6c},{0x16,0x1d,0x53,0x45,0x7f,0x62}, {0x18,0x14,0x6c,0x74,0x5c,0x48},{0x1a,0x17,0x65,0x7f,0x51,0x46}, {0x1c,0x12,0x7e,0x62,0x46,0x54},{0x1e,0x11,0x77,0x69,0x4b,0x5a}, {0x20,0x30,0x90,0xb0,0xd0,0xe0},{0x22,0x33,0x99,0xbb,0xdd,0xee}, {0x24,0x36,0x82,0xa6,0xca,0xfc},{0x26,0x35,0x8b,0xad,0xc7,0xf2}, {0x28,0x3c,0xb4,0x9c,0xe4,0xd8},{0x2a,0x3f,0xbd,0x97,0xe9,0xd6}, {0x2c,0x3a,0xa6,0x8a,0xfe,0xc4},{0x2e,0x39,0xaf,0x81,0xf3,0xca}, {0x30,0x28,0xd8,0xe8,0xb8,0x90},{0x32,0x2b,0xd1,0xe3,0xb5,0x9e}, {0x34,0x2e,0xca,0xfe,0xa2,0x8c},{0x36,0x2d,0xc3,0xf5,0xaf,0x82}, {0x38,0x24,0xfc,0xc4,0x8c,0xa8},{0x3a,0x27,0xf5,0xcf,0x81,0xa6}, {0x3c,0x22,0xee,0xd2,0x96,0xb4},{0x3e,0x21,0xe7,0xd9,0x9b,0xba}, {0x40,0x60,0x3b,0x7b,0xbb,0xdb},{0x42,0x63,0x32,0x70,0xb6,0xd5}, {0x44,0x66,0x29,0x6d,0xa1,0xc7},{0x46,0x65,0x20,0x66,0xac,0xc9}, {0x48,0x6c,0x1f,0x57,0x8f,0xe3},{0x4a,0x6f,0x16,0x5c,0x82,0xed}, {0x4c,0x6a,0x0d,0x41,0x95,0xff},{0x4e,0x69,0x04,0x4a,0x98,0xf1}, {0x50,0x78,0x73,0x23,0xd3,0xab},{0x52,0x7b,0x7a,0x28,0xde,0xa5}, {0x54,0x7e,0x61,0x35,0xc9,0xb7},{0x56,0x7d,0x68,0x3e,0xc4,0xb9}, {0x58,0x74,0x57,0x0f,0xe7,0x93},{0x5a,0x77,0x5e,0x04,0xea,0x9d}, {0x5c,0x72,0x45,0x19,0xfd,0x8f},{0x5e,0x71,0x4c,0x12,0xf0,0x81}, {0x60,0x50,0xab,0xcb,0x6b,0x3b},{0x62,0x53,0xa2,0xc0,0x66,0x35}, {0x64,0x56,0xb9,0xdd,0x71,0x27},{0x66,0x55,0xb0,0xd6,0x7c,0x29}, {0x68,0x5c,0x8f,0xe7,0x5f,0x03},{0x6a,0x5f,0x86,0xec,0x52,0x0d}, {0x6c,0x5a,0x9d,0xf1,0x45,0x1f},{0x6e,0x59,0x94,0xfa,0x48,0x11}, {0x70,0x48,0xe3,0x93,0x03,0x4b},{0x72,0x4b,0xea,0x98,0x0e,0x45}, {0x74,0x4e,0xf1,0x85,0x19,0x57},{0x76,0x4d,0xf8,0x8e,0x14,0x59}, {0x78,0x44,0xc7,0xbf,0x37,0x73},{0x7a,0x47,0xce,0xb4,0x3a,0x7d}, {0x7c,0x42,0xd5,0xa9,0x2d,0x6f},{0x7e,0x41,0xdc,0xa2,0x20,0x61}, {0x80,0xc0,0x76,0xf6,0x6d,0xad},{0x82,0xc3,0x7f,0xfd,0x60,0xa3}, {0x84,0xc6,0x64,0xe0,0x77,0xb1},{0x86,0xc5,0x6d,0xeb,0x7a,0xbf}, {0x88,0xcc,0x52,0xda,0x59,0x95},{0x8a,0xcf,0x5b,0xd1,0x54,0x9b}, {0x8c,0xca,0x40,0xcc,0x43,0x89},{0x8e,0xc9,0x49,0xc7,0x4e,0x87}, {0x90,0xd8,0x3e,0xae,0x05,0xdd},{0x92,0xdb,0x37,0xa5,0x08,0xd3}, {0x94,0xde,0x2c,0xb8,0x1f,0xc1},{0x96,0xdd,0x25,0xb3,0x12,0xcf}, {0x98,0xd4,0x1a,0x82,0x31,0xe5},{0x9a,0xd7,0x13,0x89,0x3c,0xeb}, {0x9c,0xd2,0x08,0x94,0x2b,0xf9},{0x9e,0xd1,0x01,0x9f,0x26,0xf7}, {0xa0,0xf0,0xe6,0x46,0xbd,0x4d},{0xa2,0xf3,0xef,0x4d,0xb0,0x43}, {0xa4,0xf6,0xf4,0x50,0xa7,0x51},{0xa6,0xf5,0xfd,0x5b,0xaa,0x5f}, {0xa8,0xfc,0xc2,0x6a,0x89,0x75},{0xaa,0xff,0xcb,0x61,0x84,0x7b}, {0xac,0xfa,0xd0,0x7c,0x93,0x69},{0xae,0xf9,0xd9,0x77,0x9e,0x67}, {0xb0,0xe8,0xae,0x1e,0xd5,0x3d},{0xb2,0xeb,0xa7,0x15,0xd8,0x33}, {0xb4,0xee,0xbc,0x08,0xcf,0x21},{0xb6,0xed,0xb5,0x03,0xc2,0x2f}, {0xb8,0xe4,0x8a,0x32,0xe1,0x05},{0xba,0xe7,0x83,0x39,0xec,0x0b}, {0xbc,0xe2,0x98,0x24,0xfb,0x19},{0xbe,0xe1,0x91,0x2f,0xf6,0x17}, {0xc0,0xa0,0x4d,0x8d,0xd6,0x76},{0xc2,0xa3,0x44,0x86,0xdb,0x78}, {0xc4,0xa6,0x5f,0x9b,0xcc,0x6a},{0xc6,0xa5,0x56,0x90,0xc1,0x64}, {0xc8,0xac,0x69,0xa1,0xe2,0x4e},{0xca,0xaf,0x60,0xaa,0xef,0x40}, {0xcc,0xaa,0x7b,0xb7,0xf8,0x52},{0xce,0xa9,0x72,0xbc,0xf5,0x5c}, {0xd0,0xb8,0x05,0xd5,0xbe,0x06},{0xd2,0xbb,0x0c,0xde,0xb3,0x08}, {0xd4,0xbe,0x17,0xc3,0xa4,0x1a},{0xd6,0xbd,0x1e,0xc8,0xa9,0x14}, {0xd8,0xb4,0x21,0xf9,0x8a,0x3e},{0xda,0xb7,0x28,0xf2,0x87,0x30}, {0xdc,0xb2,0x33,0xef,0x90,0x22},{0xde,0xb1,0x3a,0xe4,0x9d,0x2c}, {0xe0,0x90,0xdd,0x3d,0x06,0x96},{0xe2,0x93,0xd4,0x36,0x0b,0x98}, {0xe4,0x96,0xcf,0x2b,0x1c,0x8a},{0xe6,0x95,0xc6,0x20,0x11,0x84}, {0xe8,0x9c,0xf9,0x11,0x32,0xae},{0xea,0x9f,0xf0,0x1a,0x3f,0xa0}, {0xec,0x9a,0xeb,0x07,0x28,0xb2},{0xee,0x99,0xe2,0x0c,0x25,0xbc}, {0xf0,0x88,0x95,0x65,0x6e,0xe6},{0xf2,0x8b,0x9c,0x6e,0x63,0xe8}, {0xf4,0x8e,0x87,0x73,0x74,0xfa},{0xf6,0x8d,0x8e,0x78,0x79,0xf4}, {0xf8,0x84,0xb1,0x49,0x5a,0xde},{0xfa,0x87,0xb8,0x42,0x57,0xd0}, {0xfc,0x82,0xa3,0x5f,0x40,0xc2},{0xfe,0x81,0xaa,0x54,0x4d,0xcc}, {0x1b,0x9b,0xec,0xf7,0xda,0x41},{0x19,0x98,0xe5,0xfc,0xd7,0x4f}, {0x1f,0x9d,0xfe,0xe1,0xc0,0x5d},{0x1d,0x9e,0xf7,0xea,0xcd,0x53}, {0x13,0x97,0xc8,0xdb,0xee,0x79},{0x11,0x94,0xc1,0xd0,0xe3,0x77}, {0x17,0x91,0xda,0xcd,0xf4,0x65},{0x15,0x92,0xd3,0xc6,0xf9,0x6b}, {0x0b,0x83,0xa4,0xaf,0xb2,0x31},{0x09,0x80,0xad,0xa4,0xbf,0x3f}, {0x0f,0x85,0xb6,0xb9,0xa8,0x2d},{0x0d,0x86,0xbf,0xb2,0xa5,0x23}, {0x03,0x8f,0x80,0x83,0x86,0x09},{0x01,0x8c,0x89,0x88,0x8b,0x07}, {0x07,0x89,0x92,0x95,0x9c,0x15},{0x05,0x8a,0x9b,0x9e,0x91,0x1b}, {0x3b,0xab,0x7c,0x47,0x0a,0xa1},{0x39,0xa8,0x75,0x4c,0x07,0xaf}, {0x3f,0xad,0x6e,0x51,0x10,0xbd},{0x3d,0xae,0x67,0x5a,0x1d,0xb3}, {0x33,0xa7,0x58,0x6b,0x3e,0x99},{0x31,0xa4,0x51,0x60,0x33,0x97}, {0x37,0xa1,0x4a,0x7d,0x24,0x85},{0x35,0xa2,0x43,0x76,0x29,0x8b}, {0x2b,0xb3,0x34,0x1f,0x62,0xd1},{0x29,0xb0,0x3d,0x14,0x6f,0xdf}, {0x2f,0xb5,0x26,0x09,0x78,0xcd},{0x2d,0xb6,0x2f,0x02,0x75,0xc3}, {0x23,0xbf,0x10,0x33,0x56,0xe9},{0x21,0xbc,0x19,0x38,0x5b,0xe7}, {0x27,0xb9,0x02,0x25,0x4c,0xf5},{0x25,0xba,0x0b,0x2e,0x41,0xfb}, {0x5b,0xfb,0xd7,0x8c,0x61,0x9a},{0x59,0xf8,0xde,0x87,0x6c,0x94}, {0x5f,0xfd,0xc5,0x9a,0x7b,0x86},{0x5d,0xfe,0xcc,0x91,0x76,0x88}, {0x53,0xf7,0xf3,0xa0,0x55,0xa2},{0x51,0xf4,0xfa,0xab,0x58,0xac}, {0x57,0xf1,0xe1,0xb6,0x4f,0xbe},{0x55,0xf2,0xe8,0xbd,0x42,0xb0}, {0x4b,0xe3,0x9f,0xd4,0x09,0xea},{0x49,0xe0,0x96,0xdf,0x04,0xe4}, {0x4f,0xe5,0x8d,0xc2,0x13,0xf6},{0x4d,0xe6,0x84,0xc9,0x1e,0xf8}, {0x43,0xef,0xbb,0xf8,0x3d,0xd2},{0x41,0xec,0xb2,0xf3,0x30,0xdc}, {0x47,0xe9,0xa9,0xee,0x27,0xce},{0x45,0xea,0xa0,0xe5,0x2a,0xc0}, {0x7b,0xcb,0x47,0x3c,0xb1,0x7a},{0x79,0xc8,0x4e,0x37,0xbc,0x74}, {0x7f,0xcd,0x55,0x2a,0xab,0x66},{0x7d,0xce,0x5c,0x21,0xa6,0x68}, {0x73,0xc7,0x63,0x10,0x85,0x42},{0x71,0xc4,0x6a,0x1b,0x88,0x4c}, {0x77,0xc1,0x71,0x06,0x9f,0x5e},{0x75,0xc2,0x78,0x0d,0x92,0x50}, {0x6b,0xd3,0x0f,0x64,0xd9,0x0a},{0x69,0xd0,0x06,0x6f,0xd4,0x04}, {0x6f,0xd5,0x1d,0x72,0xc3,0x16},{0x6d,0xd6,0x14,0x79,0xce,0x18}, {0x63,0xdf,0x2b,0x48,0xed,0x32},{0x61,0xdc,0x22,0x43,0xe0,0x3c}, {0x67,0xd9,0x39,0x5e,0xf7,0x2e},{0x65,0xda,0x30,0x55,0xfa,0x20}, {0x9b,0x5b,0x9a,0x01,0xb7,0xec},{0x99,0x58,0x93,0x0a,0xba,0xe2}, {0x9f,0x5d,0x88,0x17,0xad,0xf0},{0x9d,0x5e,0x81,0x1c,0xa0,0xfe}, {0x93,0x57,0xbe,0x2d,0x83,0xd4},{0x91,0x54,0xb7,0x26,0x8e,0xda}, {0x97,0x51,0xac,0x3b,0x99,0xc8},{0x95,0x52,0xa5,0x30,0x94,0xc6}, {0x8b,0x43,0xd2,0x59,0xdf,0x9c},{0x89,0x40,0xdb,0x52,0xd2,0x92}, {0x8f,0x45,0xc0,0x4f,0xc5,0x80},{0x8d,0x46,0xc9,0x44,0xc8,0x8e}, {0x83,0x4f,0xf6,0x75,0xeb,0xa4},{0x81,0x4c,0xff,0x7e,0xe6,0xaa}, {0x87,0x49,0xe4,0x63,0xf1,0xb8},{0x85,0x4a,0xed,0x68,0xfc,0xb6}, {0xbb,0x6b,0x0a,0xb1,0x67,0x0c},{0xb9,0x68,0x03,0xba,0x6a,0x02}, {0xbf,0x6d,0x18,0xa7,0x7d,0x10},{0xbd,0x6e,0x11,0xac,0x70,0x1e}, {0xb3,0x67,0x2e,0x9d,0x53,0x34},{0xb1,0x64,0x27,0x96,0x5e,0x3a}, {0xb7,0x61,0x3c,0x8b,0x49,0x28},{0xb5,0x62,0x35,0x80,0x44,0x26}, {0xab,0x73,0x42,0xe9,0x0f,0x7c},{0xa9,0x70,0x4b,0xe2,0x02,0x72}, {0xaf,0x75,0x50,0xff,0x15,0x60},{0xad,0x76,0x59,0xf4,0x18,0x6e}, {0xa3,0x7f,0x66,0xc5,0x3b,0x44},{0xa1,0x7c,0x6f,0xce,0x36,0x4a}, {0xa7,0x79,0x74,0xd3,0x21,0x58},{0xa5,0x7a,0x7d,0xd8,0x2c,0x56}, {0xdb,0x3b,0xa1,0x7a,0x0c,0x37},{0xd9,0x38,0xa8,0x71,0x01,0x39}, {0xdf,0x3d,0xb3,0x6c,0x16,0x2b},{0xdd,0x3e,0xba,0x67,0x1b,0x25}, {0xd3,0x37,0x85,0x56,0x38,0x0f},{0xd1,0x34,0x8c,0x5d,0x35,0x01}, {0xd7,0x31,0x97,0x40,0x22,0x13},{0xd5,0x32,0x9e,0x4b,0x2f,0x1d}, {0xcb,0x23,0xe9,0x22,0x64,0x47},{0xc9,0x20,0xe0,0x29,0x69,0x49}, {0xcf,0x25,0xfb,0x34,0x7e,0x5b},{0xcd,0x26,0xf2,0x3f,0x73,0x55}, {0xc3,0x2f,0xcd,0x0e,0x50,0x7f},{0xc1,0x2c,0xc4,0x05,0x5d,0x71}, {0xc7,0x29,0xdf,0x18,0x4a,0x63},{0xc5,0x2a,0xd6,0x13,0x47,0x6d}, {0xfb,0x0b,0x31,0xca,0xdc,0xd7},{0xf9,0x08,0x38,0xc1,0xd1,0xd9}, {0xff,0x0d,0x23,0xdc,0xc6,0xcb},{0xfd,0x0e,0x2a,0xd7,0xcb,0xc5}, {0xf3,0x07,0x15,0xe6,0xe8,0xef},{0xf1,0x04,0x1c,0xed,0xe5,0xe1}, {0xf7,0x01,0x07,0xf0,0xf2,0xf3},{0xf5,0x02,0x0e,0xfb,0xff,0xfd}, {0xeb,0x13,0x79,0x92,0xb4,0xa7},{0xe9,0x10,0x70,0x99,0xb9,0xa9}, {0xef,0x15,0x6b,0x84,0xae,0xbb},{0xed,0x16,0x62,0x8f,0xa3,0xb5}, {0xe3,0x1f,0x5d,0xbe,0x80,0x9f},{0xe1,0x1c,0x54,0xb5,0x8d,0x91}, {0xe7,0x19,0x4f,0xa8,0x9a,0x83},{0xe5,0x1a,0x46,0xa3,0x97,0x8d} }; /*********************** FUNCTION DEFINITIONS ***********************/ // XORs the in and out buffers, storing the result in out. Length is in bytes. void xor_buf(const BYTE in[], BYTE out[], size_t len) { size_t idx; for (idx = 0; idx < len; idx++) out[idx] ^= in[idx]; } /******************* * AES - CBC *******************/ int aes_encrypt_cbc(const BYTE in[], size_t in_len, BYTE out[], const UINT key[], int keysize, const BYTE iv[]) { BYTE buf_in[AES_BLOCK_SIZE], buf_out[AES_BLOCK_SIZE], iv_buf[AES_BLOCK_SIZE]; int blocks, idx; if (in_len % AES_BLOCK_SIZE != 0) return(FALSE); blocks = (int)(in_len / AES_BLOCK_SIZE); memcpy(iv_buf, iv, AES_BLOCK_SIZE); for (idx = 0; idx < blocks; idx++) { memcpy(buf_in, &in[idx * AES_BLOCK_SIZE], AES_BLOCK_SIZE); xor_buf(iv_buf, buf_in, AES_BLOCK_SIZE); aes_encrypt(buf_in, buf_out, key, keysize); memcpy(&out[idx * AES_BLOCK_SIZE], buf_out, AES_BLOCK_SIZE); memcpy(iv_buf, buf_out, AES_BLOCK_SIZE); } return(TRUE); } int aes_encrypt_cbc_mac(const BYTE in[], size_t in_len, BYTE out[], const UINT key[], int keysize, const BYTE iv[]) { BYTE buf_in[AES_BLOCK_SIZE], buf_out[AES_BLOCK_SIZE], iv_buf[AES_BLOCK_SIZE]; int blocks, idx; if (in_len % AES_BLOCK_SIZE != 0) return(FALSE); blocks = (int)(in_len / AES_BLOCK_SIZE); memcpy(iv_buf, iv, AES_BLOCK_SIZE); for (idx = 0; idx < blocks; idx++) { memcpy(buf_in, &in[idx * AES_BLOCK_SIZE], AES_BLOCK_SIZE); xor_buf(iv_buf, buf_in, AES_BLOCK_SIZE); aes_encrypt(buf_in, buf_out, key, keysize); memcpy(iv_buf, buf_out, AES_BLOCK_SIZE); // Do not output all encrypted blocks. } memcpy(out, buf_out, AES_BLOCK_SIZE); // Only output the last block. return(TRUE); } int aes_decrypt_cbc(const BYTE in[], size_t in_len, BYTE out[], const UINT key[], int keysize, const BYTE iv[]) { BYTE buf_in[AES_BLOCK_SIZE], buf_out[AES_BLOCK_SIZE], iv_buf[AES_BLOCK_SIZE]; int blocks, idx; if (in_len % AES_BLOCK_SIZE != 0) return(FALSE); blocks = (int)(in_len / AES_BLOCK_SIZE); memcpy(iv_buf, iv, AES_BLOCK_SIZE); for (idx = 0; idx < blocks; idx++) { memcpy(buf_in, &in[idx * AES_BLOCK_SIZE], AES_BLOCK_SIZE); aes_decrypt(buf_in, buf_out, key, keysize); xor_buf(iv_buf, buf_out, AES_BLOCK_SIZE); memcpy(&out[idx * AES_BLOCK_SIZE], buf_out, AES_BLOCK_SIZE); memcpy(iv_buf, buf_in, AES_BLOCK_SIZE); } return(TRUE); } /******************* * AES - CTR *******************/ void increment_iv(BYTE iv[], int counter_size) { int idx; // Use counter_size bytes at the end of the IV as the big-endian integer to increment. for (idx = AES_BLOCK_SIZE - 1; idx >= AES_BLOCK_SIZE - counter_size; idx--) { iv[idx]++; if (iv[idx] != 0 || idx == AES_BLOCK_SIZE - counter_size) break; } } // Performs the encryption in-place, the input and output buffers may be the same. // Input may be an arbitrary length (in bytes). void aes_encrypt_ctr(const BYTE in[], size_t in_len, BYTE out[], const UINT key[], int keysize, const BYTE iv[]) { size_t idx = 0, last_block_length; BYTE iv_buf[AES_BLOCK_SIZE], out_buf[AES_BLOCK_SIZE]; if (in != out) memcpy(out, in, in_len); memcpy(iv_buf, iv, AES_BLOCK_SIZE); last_block_length = in_len - AES_BLOCK_SIZE; if (in_len > AES_BLOCK_SIZE) { for (idx = 0; idx < last_block_length; idx += AES_BLOCK_SIZE) { aes_encrypt(iv_buf, out_buf, key, keysize); xor_buf(out_buf, &out[idx], AES_BLOCK_SIZE); increment_iv(iv_buf, AES_BLOCK_SIZE); } } aes_encrypt(iv_buf, out_buf, key, keysize); xor_buf(out_buf, &out[idx], in_len - idx); // Use the Most Significant bytes. } void aes_decrypt_ctr(const BYTE in[], size_t in_len, BYTE out[], const UINT key[], int keysize, const BYTE iv[]) { // CTR encryption is its own inverse function. aes_encrypt_ctr(in, in_len, out, key, keysize, iv); } /******************* * AES - CCM *******************/ // out_len = payload_len + assoc_len int aes_encrypt_ccm(const BYTE payload[], UINT payload_len, const BYTE assoc[], unsigned short assoc_len, const BYTE nonce[], unsigned short nonce_len, BYTE out[], UINT *out_len, UINT mac_len, const BYTE key_str[], int keysize) { BYTE temp_iv[AES_BLOCK_SIZE], counter[AES_BLOCK_SIZE], mac[16], *buf; int end_of_buf, payload_len_store_size; UINT key[60]; if (mac_len != 4 && mac_len != 6 && mac_len != 8 && mac_len != 10 && mac_len != 12 && mac_len != 14 && mac_len != 16) return(FALSE); if (nonce_len < 7 || nonce_len > 13) return(FALSE); if (assoc_len > 32768 /* = 2^15 */) return(FALSE); buf = (BYTE*)malloc(payload_len + assoc_len + 48 /*Round both payload and associated data up a block size and add an extra block.*/); if (! buf) return(FALSE); // Prepare the key for usage. aes_key_setup(key_str, key, keysize); // Format the first block of the formatted data. payload_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len; ccm_prepare_first_format_blk(buf, assoc_len, payload_len, payload_len_store_size, mac_len, nonce, nonce_len); end_of_buf = AES_BLOCK_SIZE; // Format the Associated Data, aka, assoc[]. ccm_format_assoc_data(buf, &end_of_buf, assoc, assoc_len); // Format the Payload, aka payload[]. ccm_format_payload_data(buf, &end_of_buf, payload, payload_len); // Create the first counter block. ccm_prepare_first_ctr_blk(counter, nonce, nonce_len, payload_len_store_size); // Perform the CBC operation with an IV of zeros on the formatted buffer to calculate the MAC. memset(temp_iv, 0, AES_BLOCK_SIZE); aes_encrypt_cbc_mac(buf, end_of_buf, mac, key, keysize, temp_iv); // Copy the Payload and MAC to the output buffer. memcpy(out, payload, payload_len); memcpy(&out[payload_len], mac, mac_len); // Encrypt the Payload with CTR mode with a counter starting at 1. memcpy(temp_iv, counter, AES_BLOCK_SIZE); increment_iv(temp_iv, AES_BLOCK_SIZE - 1 - mac_len); // Last argument is the byte size of the counting portion of the counter block. /*BUG?*/ aes_encrypt_ctr(out, payload_len, out, key, keysize, temp_iv); // Encrypt the MAC with CTR mode with a counter starting at 0. aes_encrypt_ctr(&out[payload_len], mac_len, &out[payload_len], key, keysize, counter); free(buf); *out_len = payload_len + mac_len; return(TRUE); } // plaintext_len = ciphertext_len - mac_len // Needs a flag for whether the MAC matches. int aes_decrypt_ccm(const BYTE ciphertext[], UINT ciphertext_len, const BYTE assoc[], unsigned short assoc_len, const BYTE nonce[], unsigned short nonce_len, BYTE plaintext[], UINT *plaintext_len, UINT mac_len, int *mac_auth, const BYTE key_str[], int keysize) { BYTE temp_iv[AES_BLOCK_SIZE], counter[AES_BLOCK_SIZE], mac[16], mac_buf[16], *buf; int end_of_buf, plaintext_len_store_size; UINT key[60]; if (ciphertext_len <= mac_len) return(FALSE); buf = (BYTE*)malloc(assoc_len + ciphertext_len /*ciphertext_len = plaintext_len + mac_len*/ + 48); if (! buf) return(FALSE); // Prepare the key for usage. aes_key_setup(key_str, key, keysize); // Copy the plaintext and MAC to the output buffers. *plaintext_len = ciphertext_len - mac_len; plaintext_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len; memcpy(plaintext, ciphertext, *plaintext_len); memcpy(mac, &ciphertext[*plaintext_len], mac_len); // Prepare the first counter block for use in decryption. ccm_prepare_first_ctr_blk(counter, nonce, nonce_len, plaintext_len_store_size); // Decrypt the Payload with CTR mode with a counter starting at 1. memcpy(temp_iv, counter, AES_BLOCK_SIZE); increment_iv(temp_iv, AES_BLOCK_SIZE - 1 - mac_len); // (AES_BLOCK_SIZE - 1 - mac_len) is the byte size of the counting portion of the counter block. aes_decrypt_ctr(plaintext, *plaintext_len, plaintext, key, keysize, temp_iv); // Setting mac_auth to nullptr disables the authentication check. if (mac_auth != nullptr) { // Decrypt the MAC with CTR mode with a counter starting at 0. aes_decrypt_ctr(mac, mac_len, mac, key, keysize, counter); // Format the first block of the formatted data. plaintext_len_store_size = AES_BLOCK_SIZE - 1 - nonce_len; ccm_prepare_first_format_blk(buf, assoc_len, *plaintext_len, plaintext_len_store_size, mac_len, nonce, nonce_len); end_of_buf = AES_BLOCK_SIZE; // Format the Associated Data into the authentication buffer. ccm_format_assoc_data(buf, &end_of_buf, assoc, assoc_len); // Format the Payload into the authentication buffer. ccm_format_payload_data(buf, &end_of_buf, plaintext, *plaintext_len); // Perform the CBC operation with an IV of zeros on the formatted buffer to calculate the MAC. memset(temp_iv, 0, AES_BLOCK_SIZE); aes_encrypt_cbc_mac(buf, end_of_buf, mac_buf, key, keysize, temp_iv); // Compare the calculated MAC against the MAC embedded in the ciphertext to see if they are the same. if (! memcmp(mac, mac_buf, mac_len)) { *mac_auth = TRUE; } else { *mac_auth = FALSE; memset(plaintext, 0, *plaintext_len); } } free(buf); return(TRUE); } // Creates the first counter block. First byte is flags, then the nonce, then the incremented part. void ccm_prepare_first_ctr_blk(BYTE counter[], const BYTE nonce[], int nonce_len, int payload_len_store_size) { memset(counter, 0, AES_BLOCK_SIZE); counter[0] = (payload_len_store_size - 1) & 0x07; memcpy(&counter[1], nonce, nonce_len); } void ccm_prepare_first_format_blk(BYTE buf[], int assoc_len, int payload_len, int payload_len_store_size, int mac_len, const BYTE nonce[], int nonce_len) { // Set the flags for the first byte of the first block. buf[0] = ((((mac_len - 2) / 2) & 0x07) << 3) | ((payload_len_store_size - 1) & 0x07); if (assoc_len > 0) buf[0] += 0x40; // Format the rest of the first block, storing the nonce and the size of the payload. memcpy(&buf[1], nonce, nonce_len); memset(&buf[1 + nonce_len], 0, AES_BLOCK_SIZE - 1 - nonce_len); buf[15] = payload_len & 0x000000FF; buf[14] = (payload_len >> 8) & 0x000000FF; } void ccm_format_assoc_data(BYTE buf[], int *end_of_buf, const BYTE assoc[], int assoc_len) { int pad; buf[*end_of_buf + 1] = assoc_len & 0x00FF; buf[*end_of_buf] = (assoc_len >> 8) & 0x00FF; *end_of_buf += 2; memcpy(&buf[*end_of_buf], assoc, assoc_len); *end_of_buf += assoc_len; pad = AES_BLOCK_SIZE - (*end_of_buf % AES_BLOCK_SIZE); /*BUG?*/ memset(&buf[*end_of_buf], 0, pad); *end_of_buf += pad; } void ccm_format_payload_data(BYTE buf[], int *end_of_buf, const BYTE payload[], int payload_len) { int pad; memcpy(&buf[*end_of_buf], payload, payload_len); *end_of_buf += payload_len; pad = *end_of_buf % AES_BLOCK_SIZE; if (pad != 0) pad = AES_BLOCK_SIZE - pad; memset(&buf[*end_of_buf], 0, pad); *end_of_buf += pad; } /******************* * AES *******************/ ///////////////// // KEY EXPANSION ///////////////// // Substitutes a word using the AES S-Box. UINT SubWord(UINT word) { unsigned int result; result = (int)aes_sbox[(word >> 4) & 0x0000000F][word & 0x0000000F]; result += (int)aes_sbox[(word >> 12) & 0x0000000F][(word >> 8) & 0x0000000F] << 8; result += (int)aes_sbox[(word >> 20) & 0x0000000F][(word >> 16) & 0x0000000F] << 16; result += (int)aes_sbox[(word >> 28) & 0x0000000F][(word >> 24) & 0x0000000F] << 24; return(result); } // Performs the action of generating the keys that will be used in every round of // encryption. "key" is the user-supplied input key, "w" is the output key schedule, // "keysize" is the length in bits of "key", must be 128, 192, or 256. void aes_key_setup(const BYTE key[], UINT w[], int keysize) { int Nb=4,Nr,Nk,idx; UINT temp,Rcon[]={0x01000000,0x02000000,0x04000000,0x08000000,0x10000000,0x20000000, 0x40000000,0x80000000,0x1b000000,0x36000000,0x6c000000,0xd8000000, 0xab000000,0x4d000000,0x9a000000}; switch (keysize) { case 128: Nr = 10; Nk = 4; break; case 192: Nr = 12; Nk = 6; break; case 256: Nr = 14; Nk = 8; break; default: return; } for (idx=0; idx < Nk; ++idx) { w[idx] = ((key[4 * idx]) << 24) | ((key[4 * idx + 1]) << 16) | ((key[4 * idx + 2]) << 8) | ((key[4 * idx + 3])); } for (idx = Nk; idx < Nb * (Nr+1); ++idx) { temp = w[idx - 1]; if ((idx % Nk) == 0) temp = SubWord(KE_ROTWORD(temp)) ^ Rcon[(idx-1)/Nk]; else if (Nk > 6 && (idx % Nk) == 4) temp = SubWord(temp); w[idx] = w[idx-Nk] ^ temp; } } ///////////////// // ADD ROUND KEY ///////////////// // Performs the AddRoundKey step. Each round has its own pre-generated 16-byte key in the // form of 4 integers (the "w" array). Each integer is XOR'd by one column of the state. // Also performs the job of InvAddRoundKey(); since the function is a simple XOR process, // it is its own inverse. void AddRoundKey(BYTE state[][4], const UINT w[]) { BYTE subkey[4]; // memcpy(subkey,&w[idx],4); // Not accurate for big endian machines // Subkey 1 subkey[0] = w[0] >> 24; subkey[1] = w[0] >> 16; subkey[2] = w[0] >> 8; subkey[3] = w[0]; state[0][0] ^= subkey[0]; state[1][0] ^= subkey[1]; state[2][0] ^= subkey[2]; state[3][0] ^= subkey[3]; // Subkey 2 subkey[0] = w[1] >> 24; subkey[1] = w[1] >> 16; subkey[2] = w[1] >> 8; subkey[3] = w[1]; state[0][1] ^= subkey[0]; state[1][1] ^= subkey[1]; state[2][1] ^= subkey[2]; state[3][1] ^= subkey[3]; // Subkey 3 subkey[0] = w[2] >> 24; subkey[1] = w[2] >> 16; subkey[2] = w[2] >> 8; subkey[3] = w[2]; state[0][2] ^= subkey[0]; state[1][2] ^= subkey[1]; state[2][2] ^= subkey[2]; state[3][2] ^= subkey[3]; // Subkey 4 subkey[0] = w[3] >> 24; subkey[1] = w[3] >> 16; subkey[2] = w[3] >> 8; subkey[3] = w[3]; state[0][3] ^= subkey[0]; state[1][3] ^= subkey[1]; state[2][3] ^= subkey[2]; state[3][3] ^= subkey[3]; } ///////////////// // (Inv)SubBytes ///////////////// // Performs the SubBytes step. All bytes in the state are substituted with a // pre-calculated value from a lookup table. void SubBytes(BYTE state[][4]) { state[0][0] = aes_sbox[state[0][0] >> 4][state[0][0] & 0x0F]; state[0][1] = aes_sbox[state[0][1] >> 4][state[0][1] & 0x0F]; state[0][2] = aes_sbox[state[0][2] >> 4][state[0][2] & 0x0F]; state[0][3] = aes_sbox[state[0][3] >> 4][state[0][3] & 0x0F]; state[1][0] = aes_sbox[state[1][0] >> 4][state[1][0] & 0x0F]; state[1][1] = aes_sbox[state[1][1] >> 4][state[1][1] & 0x0F]; state[1][2] = aes_sbox[state[1][2] >> 4][state[1][2] & 0x0F]; state[1][3] = aes_sbox[state[1][3] >> 4][state[1][3] & 0x0F]; state[2][0] = aes_sbox[state[2][0] >> 4][state[2][0] & 0x0F]; state[2][1] = aes_sbox[state[2][1] >> 4][state[2][1] & 0x0F]; state[2][2] = aes_sbox[state[2][2] >> 4][state[2][2] & 0x0F]; state[2][3] = aes_sbox[state[2][3] >> 4][state[2][3] & 0x0F]; state[3][0] = aes_sbox[state[3][0] >> 4][state[3][0] & 0x0F]; state[3][1] = aes_sbox[state[3][1] >> 4][state[3][1] & 0x0F]; state[3][2] = aes_sbox[state[3][2] >> 4][state[3][2] & 0x0F]; state[3][3] = aes_sbox[state[3][3] >> 4][state[3][3] & 0x0F]; } void InvSubBytes(BYTE state[][4]) { state[0][0] = aes_invsbox[state[0][0] >> 4][state[0][0] & 0x0F]; state[0][1] = aes_invsbox[state[0][1] >> 4][state[0][1] & 0x0F]; state[0][2] = aes_invsbox[state[0][2] >> 4][state[0][2] & 0x0F]; state[0][3] = aes_invsbox[state[0][3] >> 4][state[0][3] & 0x0F]; state[1][0] = aes_invsbox[state[1][0] >> 4][state[1][0] & 0x0F]; state[1][1] = aes_invsbox[state[1][1] >> 4][state[1][1] & 0x0F]; state[1][2] = aes_invsbox[state[1][2] >> 4][state[1][2] & 0x0F]; state[1][3] = aes_invsbox[state[1][3] >> 4][state[1][3] & 0x0F]; state[2][0] = aes_invsbox[state[2][0] >> 4][state[2][0] & 0x0F]; state[2][1] = aes_invsbox[state[2][1] >> 4][state[2][1] & 0x0F]; state[2][2] = aes_invsbox[state[2][2] >> 4][state[2][2] & 0x0F]; state[2][3] = aes_invsbox[state[2][3] >> 4][state[2][3] & 0x0F]; state[3][0] = aes_invsbox[state[3][0] >> 4][state[3][0] & 0x0F]; state[3][1] = aes_invsbox[state[3][1] >> 4][state[3][1] & 0x0F]; state[3][2] = aes_invsbox[state[3][2] >> 4][state[3][2] & 0x0F]; state[3][3] = aes_invsbox[state[3][3] >> 4][state[3][3] & 0x0F]; } ///////////////// // (Inv)ShiftRows ///////////////// // Performs the ShiftRows step. All rows are shifted cylindrically to the left. void ShiftRows(BYTE state[][4]) { int t; // Shift left by 1 t = state[1][0]; state[1][0] = state[1][1]; state[1][1] = state[1][2]; state[1][2] = state[1][3]; state[1][3] = t; // Shift left by 2 t = state[2][0]; state[2][0] = state[2][2]; state[2][2] = t; t = state[2][1]; state[2][1] = state[2][3]; state[2][3] = t; // Shift left by 3 t = state[3][0]; state[3][0] = state[3][3]; state[3][3] = state[3][2]; state[3][2] = state[3][1]; state[3][1] = t; } // All rows are shifted cylindrically to the right. void InvShiftRows(BYTE state[][4]) { int t; // Shift right by 1 t = state[1][3]; state[1][3] = state[1][2]; state[1][2] = state[1][1]; state[1][1] = state[1][0]; state[1][0] = t; // Shift right by 2 t = state[2][3]; state[2][3] = state[2][1]; state[2][1] = t; t = state[2][2]; state[2][2] = state[2][0]; state[2][0] = t; // Shift right by 3 t = state[3][3]; state[3][3] = state[3][0]; state[3][0] = state[3][1]; state[3][1] = state[3][2]; state[3][2] = t; } ///////////////// // (Inv)MixColumns ///////////////// // Performs the MixColums step. The state is multiplied by itself using matrix // multiplication in a Galios Field 2^8. All multiplication is pre-computed in a table. // Addition is equivilent to XOR. (Must always make a copy of the column as the original // values will be destoyed.) void MixColumns(BYTE state[][4]) { BYTE col[4]; // Column 1 col[0] = state[0][0]; col[1] = state[1][0]; col[2] = state[2][0]; col[3] = state[3][0]; state[0][0] = gf_mul[col[0]][0]; state[0][0] ^= gf_mul[col[1]][1]; state[0][0] ^= col[2]; state[0][0] ^= col[3]; state[1][0] = col[0]; state[1][0] ^= gf_mul[col[1]][0]; state[1][0] ^= gf_mul[col[2]][1]; state[1][0] ^= col[3]; state[2][0] = col[0]; state[2][0] ^= col[1]; state[2][0] ^= gf_mul[col[2]][0]; state[2][0] ^= gf_mul[col[3]][1]; state[3][0] = gf_mul[col[0]][1]; state[3][0] ^= col[1]; state[3][0] ^= col[2]; state[3][0] ^= gf_mul[col[3]][0]; // Column 2 col[0] = state[0][1]; col[1] = state[1][1]; col[2] = state[2][1]; col[3] = state[3][1]; state[0][1] = gf_mul[col[0]][0]; state[0][1] ^= gf_mul[col[1]][1]; state[0][1] ^= col[2]; state[0][1] ^= col[3]; state[1][1] = col[0]; state[1][1] ^= gf_mul[col[1]][0]; state[1][1] ^= gf_mul[col[2]][1]; state[1][1] ^= col[3]; state[2][1] = col[0]; state[2][1] ^= col[1]; state[2][1] ^= gf_mul[col[2]][0]; state[2][1] ^= gf_mul[col[3]][1]; state[3][1] = gf_mul[col[0]][1]; state[3][1] ^= col[1]; state[3][1] ^= col[2]; state[3][1] ^= gf_mul[col[3]][0]; // Column 3 col[0] = state[0][2]; col[1] = state[1][2]; col[2] = state[2][2]; col[3] = state[3][2]; state[0][2] = gf_mul[col[0]][0]; state[0][2] ^= gf_mul[col[1]][1]; state[0][2] ^= col[2]; state[0][2] ^= col[3]; state[1][2] = col[0]; state[1][2] ^= gf_mul[col[1]][0]; state[1][2] ^= gf_mul[col[2]][1]; state[1][2] ^= col[3]; state[2][2] = col[0]; state[2][2] ^= col[1]; state[2][2] ^= gf_mul[col[2]][0]; state[2][2] ^= gf_mul[col[3]][1]; state[3][2] = gf_mul[col[0]][1]; state[3][2] ^= col[1]; state[3][2] ^= col[2]; state[3][2] ^= gf_mul[col[3]][0]; // Column 4 col[0] = state[0][3]; col[1] = state[1][3]; col[2] = state[2][3]; col[3] = state[3][3]; state[0][3] = gf_mul[col[0]][0]; state[0][3] ^= gf_mul[col[1]][1]; state[0][3] ^= col[2]; state[0][3] ^= col[3]; state[1][3] = col[0]; state[1][3] ^= gf_mul[col[1]][0]; state[1][3] ^= gf_mul[col[2]][1]; state[1][3] ^= col[3]; state[2][3] = col[0]; state[2][3] ^= col[1]; state[2][3] ^= gf_mul[col[2]][0]; state[2][3] ^= gf_mul[col[3]][1]; state[3][3] = gf_mul[col[0]][1]; state[3][3] ^= col[1]; state[3][3] ^= col[2]; state[3][3] ^= gf_mul[col[3]][0]; } void InvMixColumns(BYTE state[][4]) { BYTE col[4]; // Column 1 col[0] = state[0][0]; col[1] = state[1][0]; col[2] = state[2][0]; col[3] = state[3][0]; state[0][0] = gf_mul[col[0]][5]; state[0][0] ^= gf_mul[col[1]][3]; state[0][0] ^= gf_mul[col[2]][4]; state[0][0] ^= gf_mul[col[3]][2]; state[1][0] = gf_mul[col[0]][2]; state[1][0] ^= gf_mul[col[1]][5]; state[1][0] ^= gf_mul[col[2]][3]; state[1][0] ^= gf_mul[col[3]][4]; state[2][0] = gf_mul[col[0]][4]; state[2][0] ^= gf_mul[col[1]][2]; state[2][0] ^= gf_mul[col[2]][5]; state[2][0] ^= gf_mul[col[3]][3]; state[3][0] = gf_mul[col[0]][3]; state[3][0] ^= gf_mul[col[1]][4]; state[3][0] ^= gf_mul[col[2]][2]; state[3][0] ^= gf_mul[col[3]][5]; // Column 2 col[0] = state[0][1]; col[1] = state[1][1]; col[2] = state[2][1]; col[3] = state[3][1]; state[0][1] = gf_mul[col[0]][5]; state[0][1] ^= gf_mul[col[1]][3]; state[0][1] ^= gf_mul[col[2]][4]; state[0][1] ^= gf_mul[col[3]][2]; state[1][1] = gf_mul[col[0]][2]; state[1][1] ^= gf_mul[col[1]][5]; state[1][1] ^= gf_mul[col[2]][3]; state[1][1] ^= gf_mul[col[3]][4]; state[2][1] = gf_mul[col[0]][4]; state[2][1] ^= gf_mul[col[1]][2]; state[2][1] ^= gf_mul[col[2]][5]; state[2][1] ^= gf_mul[col[3]][3]; state[3][1] = gf_mul[col[0]][3]; state[3][1] ^= gf_mul[col[1]][4]; state[3][1] ^= gf_mul[col[2]][2]; state[3][1] ^= gf_mul[col[3]][5]; // Column 3 col[0] = state[0][2]; col[1] = state[1][2]; col[2] = state[2][2]; col[3] = state[3][2]; state[0][2] = gf_mul[col[0]][5]; state[0][2] ^= gf_mul[col[1]][3]; state[0][2] ^= gf_mul[col[2]][4]; state[0][2] ^= gf_mul[col[3]][2]; state[1][2] = gf_mul[col[0]][2]; state[1][2] ^= gf_mul[col[1]][5]; state[1][2] ^= gf_mul[col[2]][3]; state[1][2] ^= gf_mul[col[3]][4]; state[2][2] = gf_mul[col[0]][4]; state[2][2] ^= gf_mul[col[1]][2]; state[2][2] ^= gf_mul[col[2]][5]; state[2][2] ^= gf_mul[col[3]][3]; state[3][2] = gf_mul[col[0]][3]; state[3][2] ^= gf_mul[col[1]][4]; state[3][2] ^= gf_mul[col[2]][2]; state[3][2] ^= gf_mul[col[3]][5]; // Column 4 col[0] = state[0][3]; col[1] = state[1][3]; col[2] = state[2][3]; col[3] = state[3][3]; state[0][3] = gf_mul[col[0]][5]; state[0][3] ^= gf_mul[col[1]][3]; state[0][3] ^= gf_mul[col[2]][4]; state[0][3] ^= gf_mul[col[3]][2]; state[1][3] = gf_mul[col[0]][2]; state[1][3] ^= gf_mul[col[1]][5]; state[1][3] ^= gf_mul[col[2]][3]; state[1][3] ^= gf_mul[col[3]][4]; state[2][3] = gf_mul[col[0]][4]; state[2][3] ^= gf_mul[col[1]][2]; state[2][3] ^= gf_mul[col[2]][5]; state[2][3] ^= gf_mul[col[3]][3]; state[3][3] = gf_mul[col[0]][3]; state[3][3] ^= gf_mul[col[1]][4]; state[3][3] ^= gf_mul[col[2]][2]; state[3][3] ^= gf_mul[col[3]][5]; } ///////////////// // (En/De)Crypt ///////////////// void aes_encrypt(const BYTE in[], BYTE out[], const UINT key[], int keysize) { BYTE state[4][4]; // Copy input array (should be 16 bytes long) to a matrix (sequential bytes are ordered // by row, not col) called "state" for processing. // *** Implementation note: The official AES documentation references the state by // column, then row. Accessing an element in C requires row then column. Thus, all state // references in AES must have the column and row indexes reversed for C implementation. state[0][0] = in[0]; state[1][0] = in[1]; state[2][0] = in[2]; state[3][0] = in[3]; state[0][1] = in[4]; state[1][1] = in[5]; state[2][1] = in[6]; state[3][1] = in[7]; state[0][2] = in[8]; state[1][2] = in[9]; state[2][2] = in[10]; state[3][2] = in[11]; state[0][3] = in[12]; state[1][3] = in[13]; state[2][3] = in[14]; state[3][3] = in[15]; // Perform the necessary number of rounds. The round key is added first. // The last round does not perform the MixColumns step. AddRoundKey(state,&key[0]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[4]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[8]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[12]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[16]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[20]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[24]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[28]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[32]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[36]); if (keysize != 128) { SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[40]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[44]); if (keysize != 192) { SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[48]); SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(state,&key[52]); SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[56]); } else { SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[48]); } } else { SubBytes(state); ShiftRows(state); AddRoundKey(state,&key[40]); } // Copy the state to the output array. out[0] = state[0][0]; out[1] = state[1][0]; out[2] = state[2][0]; out[3] = state[3][0]; out[4] = state[0][1]; out[5] = state[1][1]; out[6] = state[2][1]; out[7] = state[3][1]; out[8] = state[0][2]; out[9] = state[1][2]; out[10] = state[2][2]; out[11] = state[3][2]; out[12] = state[0][3]; out[13] = state[1][3]; out[14] = state[2][3]; out[15] = state[3][3]; } void aes_decrypt(const BYTE in[], BYTE out[], const UINT key[], int keysize) { BYTE state[4][4]; // Copy the input to the state. state[0][0] = in[0]; state[1][0] = in[1]; state[2][0] = in[2]; state[3][0] = in[3]; state[0][1] = in[4]; state[1][1] = in[5]; state[2][1] = in[6]; state[3][1] = in[7]; state[0][2] = in[8]; state[1][2] = in[9]; state[2][2] = in[10]; state[3][2] = in[11]; state[0][3] = in[12]; state[1][3] = in[13]; state[2][3] = in[14]; state[3][3] = in[15]; // Perform the necessary number of rounds. The round key is added first. // The last round does not perform the MixColumns step. if (keysize > 128) { if (keysize > 192) { AddRoundKey(state,&key[56]); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[52]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[48]);InvMixColumns(state); } else { AddRoundKey(state,&key[48]); } InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[44]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[40]);InvMixColumns(state); } else { AddRoundKey(state,&key[40]); } InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[36]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[32]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[28]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[24]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[20]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[16]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[12]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[8]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[4]);InvMixColumns(state); InvShiftRows(state);InvSubBytes(state);AddRoundKey(state,&key[0]); // Copy the state to the output array. out[0] = state[0][0]; out[1] = state[1][0]; out[2] = state[2][0]; out[3] = state[3][0]; out[4] = state[0][1]; out[5] = state[1][1]; out[6] = state[2][1]; out[7] = state[3][1]; out[8] = state[0][2]; out[9] = state[1][2]; out[10] = state[2][2]; out[11] = state[3][2]; out[12] = state[0][3]; out[13] = state[1][3]; out[14] = state[2][3]; out[15] = state[3][3]; } // -------------------------------------------------- DES -------------------------------------------------- // /****************************** MACROS ******************************/ // Obtain bit "b" from the left and shift it "c" places from the right #define BITNUM(a,b,c) (((a[(b)/8] >> (7 - (b%8))) & 0x01) << (c)) #define BITNUMINTR(a,b,c) ((((a) >> (31 - (b))) & 0x00000001) << (c)) #define BITNUMINTL(a,b,c) ((((a) << (b)) & 0x80000000) >> (c)) // This macro converts a 6 bit block with the S-Box row defined as the first and last // bits to a 6 bit block with the row defined by the first two bits. #define SBOXBIT(a) (((a) & 0x20) | (((a) & 0x1f) >> 1) | (((a) & 0x01) << 4)) /**************************** VARIABLES *****************************/ static const BYTE sbox1[64] = { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }; static const BYTE sbox2[64] = { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }; static const BYTE sbox3[64] = { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }; static const BYTE sbox4[64] = { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }; static const BYTE sbox5[64] = { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }; static const BYTE sbox6[64] = { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }; static const BYTE sbox7[64] = { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }; static const BYTE sbox8[64] = { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }; /*********************** FUNCTION DEFINITIONS ***********************/ // Initial (Inv)Permutation step void IP(UINT state[], const BYTE in[]) { state[0] = BITNUM(in,57,31) | BITNUM(in,49,30) | BITNUM(in,41,29) | BITNUM(in,33,28) | BITNUM(in,25,27) | BITNUM(in,17,26) | BITNUM(in,9,25) | BITNUM(in,1,24) | BITNUM(in,59,23) | BITNUM(in,51,22) | BITNUM(in,43,21) | BITNUM(in,35,20) | BITNUM(in,27,19) | BITNUM(in,19,18) | BITNUM(in,11,17) | BITNUM(in,3,16) | BITNUM(in,61,15) | BITNUM(in,53,14) | BITNUM(in,45,13) | BITNUM(in,37,12) | BITNUM(in,29,11) | BITNUM(in,21,10) | BITNUM(in,13,9) | BITNUM(in,5,8) | BITNUM(in,63,7) | BITNUM(in,55,6) | BITNUM(in,47,5) | BITNUM(in,39,4) | BITNUM(in,31,3) | BITNUM(in,23,2) | BITNUM(in,15,1) | BITNUM(in,7,0); state[1] = BITNUM(in,56,31) | BITNUM(in,48,30) | BITNUM(in,40,29) | BITNUM(in,32,28) | BITNUM(in,24,27) | BITNUM(in,16,26) | BITNUM(in,8,25) | BITNUM(in,0,24) | BITNUM(in,58,23) | BITNUM(in,50,22) | BITNUM(in,42,21) | BITNUM(in,34,20) | BITNUM(in,26,19) | BITNUM(in,18,18) | BITNUM(in,10,17) | BITNUM(in,2,16) | BITNUM(in,60,15) | BITNUM(in,52,14) | BITNUM(in,44,13) | BITNUM(in,36,12) | BITNUM(in,28,11) | BITNUM(in,20,10) | BITNUM(in,12,9) | BITNUM(in,4,8) | BITNUM(in,62,7) | BITNUM(in,54,6) | BITNUM(in,46,5) | BITNUM(in,38,4) | BITNUM(in,30,3) | BITNUM(in,22,2) | BITNUM(in,14,1) | BITNUM(in,6,0); } void InvIP(UINT state[], BYTE in[]) { in[0] = BITNUMINTR(state[1],7,7) | BITNUMINTR(state[0],7,6) | BITNUMINTR(state[1],15,5) | BITNUMINTR(state[0],15,4) | BITNUMINTR(state[1],23,3) | BITNUMINTR(state[0],23,2) | BITNUMINTR(state[1],31,1) | BITNUMINTR(state[0],31,0); in[1] = BITNUMINTR(state[1],6,7) | BITNUMINTR(state[0],6,6) | BITNUMINTR(state[1],14,5) | BITNUMINTR(state[0],14,4) | BITNUMINTR(state[1],22,3) | BITNUMINTR(state[0],22,2) | BITNUMINTR(state[1],30,1) | BITNUMINTR(state[0],30,0); in[2] = BITNUMINTR(state[1],5,7) | BITNUMINTR(state[0],5,6) | BITNUMINTR(state[1],13,5) | BITNUMINTR(state[0],13,4) | BITNUMINTR(state[1],21,3) | BITNUMINTR(state[0],21,2) | BITNUMINTR(state[1],29,1) | BITNUMINTR(state[0],29,0); in[3] = BITNUMINTR(state[1],4,7) | BITNUMINTR(state[0],4,6) | BITNUMINTR(state[1],12,5) | BITNUMINTR(state[0],12,4) | BITNUMINTR(state[1],20,3) | BITNUMINTR(state[0],20,2) | BITNUMINTR(state[1],28,1) | BITNUMINTR(state[0],28,0); in[4] = BITNUMINTR(state[1],3,7) | BITNUMINTR(state[0],3,6) | BITNUMINTR(state[1],11,5) | BITNUMINTR(state[0],11,4) | BITNUMINTR(state[1],19,3) | BITNUMINTR(state[0],19,2) | BITNUMINTR(state[1],27,1) | BITNUMINTR(state[0],27,0); in[5] = BITNUMINTR(state[1],2,7) | BITNUMINTR(state[0],2,6) | BITNUMINTR(state[1],10,5) | BITNUMINTR(state[0],10,4) | BITNUMINTR(state[1],18,3) | BITNUMINTR(state[0],18,2) | BITNUMINTR(state[1],26,1) | BITNUMINTR(state[0],26,0); in[6] = BITNUMINTR(state[1],1,7) | BITNUMINTR(state[0],1,6) | BITNUMINTR(state[1],9,5) | BITNUMINTR(state[0],9,4) | BITNUMINTR(state[1],17,3) | BITNUMINTR(state[0],17,2) | BITNUMINTR(state[1],25,1) | BITNUMINTR(state[0],25,0); in[7] = BITNUMINTR(state[1],0,7) | BITNUMINTR(state[0],0,6) | BITNUMINTR(state[1],8,5) | BITNUMINTR(state[0],8,4) | BITNUMINTR(state[1],16,3) | BITNUMINTR(state[0],16,2) | BITNUMINTR(state[1],24,1) | BITNUMINTR(state[0],24,0); } UINT f(UINT state, const BYTE key[]) { BYTE lrgstate[6]; //,i; UINT t1,t2; // Expantion Permutation t1 = BITNUMINTL(state,31,0) | ((state & 0xf0000000) >> 1) | BITNUMINTL(state,4,5) | BITNUMINTL(state,3,6) | ((state & 0x0f000000) >> 3) | BITNUMINTL(state,8,11) | BITNUMINTL(state,7,12) | ((state & 0x00f00000) >> 5) | BITNUMINTL(state,12,17) | BITNUMINTL(state,11,18) | ((state & 0x000f0000) >> 7) | BITNUMINTL(state,16,23); t2 = BITNUMINTL(state,15,0) | ((state & 0x0000f000) << 15) | BITNUMINTL(state,20,5) | BITNUMINTL(state,19,6) | ((state & 0x00000f00) << 13) | BITNUMINTL(state,24,11) | BITNUMINTL(state,23,12) | ((state & 0x000000f0) << 11) | BITNUMINTL(state,28,17) | BITNUMINTL(state,27,18) | ((state & 0x0000000f) << 9) | BITNUMINTL(state,0,23); lrgstate[0] = (t1 >> 24) & 0x000000ff; lrgstate[1] = (t1 >> 16) & 0x000000ff; lrgstate[2] = (t1 >> 8) & 0x000000ff; lrgstate[3] = (t2 >> 24) & 0x000000ff; lrgstate[4] = (t2 >> 16) & 0x000000ff; lrgstate[5] = (t2 >> 8) & 0x000000ff; // Key XOR lrgstate[0] ^= key[0]; lrgstate[1] ^= key[1]; lrgstate[2] ^= key[2]; lrgstate[3] ^= key[3]; lrgstate[4] ^= key[4]; lrgstate[5] ^= key[5]; // S-Box Permutation state = (sbox1[SBOXBIT(lrgstate[0] >> 2)] << 28) | (sbox2[SBOXBIT(((lrgstate[0] & 0x03) << 4) | (lrgstate[1] >> 4))] << 24) | (sbox3[SBOXBIT(((lrgstate[1] & 0x0f) << 2) | (lrgstate[2] >> 6))] << 20) | (sbox4[SBOXBIT(lrgstate[2] & 0x3f)] << 16) | (sbox5[SBOXBIT(lrgstate[3] >> 2)] << 12) | (sbox6[SBOXBIT(((lrgstate[3] & 0x03) << 4) | (lrgstate[4] >> 4))] << 8) | (sbox7[SBOXBIT(((lrgstate[4] & 0x0f) << 2) | (lrgstate[5] >> 6))] << 4) | sbox8[SBOXBIT(lrgstate[5] & 0x3f)]; // P-Box Permutation state = BITNUMINTL(state,15,0) | BITNUMINTL(state,6,1) | BITNUMINTL(state,19,2) | BITNUMINTL(state,20,3) | BITNUMINTL(state,28,4) | BITNUMINTL(state,11,5) | BITNUMINTL(state,27,6) | BITNUMINTL(state,16,7) | BITNUMINTL(state,0,8) | BITNUMINTL(state,14,9) | BITNUMINTL(state,22,10) | BITNUMINTL(state,25,11) | BITNUMINTL(state,4,12) | BITNUMINTL(state,17,13) | BITNUMINTL(state,30,14) | BITNUMINTL(state,9,15) | BITNUMINTL(state,1,16) | BITNUMINTL(state,7,17) | BITNUMINTL(state,23,18) | BITNUMINTL(state,13,19) | BITNUMINTL(state,31,20) | BITNUMINTL(state,26,21) | BITNUMINTL(state,2,22) | BITNUMINTL(state,8,23) | BITNUMINTL(state,18,24) | BITNUMINTL(state,12,25) | BITNUMINTL(state,29,26) | BITNUMINTL(state,5,27) | BITNUMINTL(state,21,28) | BITNUMINTL(state,10,29) | BITNUMINTL(state,3,30) | BITNUMINTL(state,24,31); // Return the final state value return(state); } void des_key_setup(const BYTE key[], BYTE schedule[][6], DES_MODE mode) { UINT i, j, to_gen, C, D; const UINT key_rnd_shift[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1}; const UINT key_perm_c[28] = {56,48,40,32,24,16,8,0,57,49,41,33,25,17, 9,1,58,50,42,34,26,18,10,2,59,51,43,35}; const UINT key_perm_d[28] = {62,54,46,38,30,22,14,6,61,53,45,37,29,21, 13,5,60,52,44,36,28,20,12,4,27,19,11,3}; const UINT key_compression[48] = {13,16,10,23,0,4,2,27,14,5,20,9, 22,18,11,3,25,7,15,6,26,19,12,1, 40,51,30,36,46,54,29,39,50,44,32,47, 43,48,38,55,33,52,45,41,49,35,28,31}; // Permutated Choice #1 (copy the key in, ignoring parity bits). for (i = 0, j = 31, C = 0; i < 28; ++i, --j) C |= BITNUM(key,key_perm_c[i],j); for (i = 0, j = 31, D = 0; i < 28; ++i, --j) D |= BITNUM(key,key_perm_d[i],j); // Generate the 16 subkeys. for (i = 0; i < 16; ++i) { C = ((C << key_rnd_shift[i]) | (C >> (28-key_rnd_shift[i]))) & 0xfffffff0; D = ((D << key_rnd_shift[i]) | (D >> (28-key_rnd_shift[i]))) & 0xfffffff0; // Decryption subkeys are reverse order of encryption subkeys so // generate them in reverse if the key schedule is for decryption useage. if (mode == DES_DECRYPT) to_gen = 15 - i; else /*(if mode == DES_ENCRYPT)*/ to_gen = i; // Initialize the array for (j = 0; j < 6; ++j) schedule[to_gen][j] = 0; for (j = 0; j < 24; ++j) schedule[to_gen][j/8] |= BITNUMINTR(C,key_compression[j],7 - (j%8)); for ( ; j < 48; ++j) schedule[to_gen][j/8] |= BITNUMINTR(D,key_compression[j] - 28,7 - (j%8)); } } void des_crypt(const BYTE in[], BYTE out[], const BYTE key[][6]) { UINT state[2],idx,t; IP(state,in); for (idx=0; idx < 15; ++idx) { t = state[1]; state[1] = f(state[1],key[idx]) ^ state[0]; state[0] = t; } // Perform the final loop manually as it doesn't switch sides state[0] = f(state[1],key[15]) ^ state[0]; InvIP(state,out); } void three_des_key_setup(const BYTE key[], BYTE schedule[][16][6], DES_MODE mode) { if (mode == DES_ENCRYPT) { des_key_setup(&key[0],schedule[0],mode); des_key_setup(&key[8],schedule[1],(DES_MODE)(!mode)); des_key_setup(&key[16],schedule[2],mode); } else /*if (mode == DES_DECRYPT*/ { des_key_setup(&key[16],schedule[0],mode); des_key_setup(&key[8],schedule[1],(DES_MODE)(!mode)); des_key_setup(&key[0],schedule[2],mode); } } void three_des_crypt(const BYTE in[], BYTE out[], const BYTE key[][16][6]) { des_crypt(in,out,key[0]); des_crypt(out,out,key[1]); des_crypt(out,out,key[2]); } // -------------------------------------------------- MD2 -------------------------------------------------- // /**************************** VARIABLES *****************************/ static const BYTE s[256] = { 41, 46, 67, 201, 162, 216, 124, 1, 61, 54, 84, 161, 236, 240, 6, 19, 98, 167, 5, 243, 192, 199, 115, 140, 152, 147, 43, 217, 188, 76, 130, 202, 30, 155, 87, 60, 253, 212, 224, 22, 103, 66, 111, 24, 138, 23, 229, 18, 190, 78, 196, 214, 218, 158, 222, 73, 160, 251, 245, 142, 187, 47, 238, 122, 169, 104, 121, 145, 21, 178, 7, 63, 148, 194, 16, 137, 11, 34, 95, 33, 128, 127, 93, 154, 90, 144, 50, 39, 53, 62, 204, 231, 191, 247, 151, 3, 255, 25, 48, 179, 72, 165, 181, 209, 215, 94, 146, 42, 172, 86, 170, 198, 79, 184, 56, 210, 150, 164, 125, 182, 118, 252, 107, 226, 156, 116, 4, 241, 69, 157, 112, 89, 100, 113, 135, 32, 134, 91, 207, 101, 230, 45, 168, 2, 27, 96, 37, 173, 174, 176, 185, 246, 28, 70, 97, 105, 52, 64, 126, 15, 85, 71, 163, 35, 221, 81, 175, 58, 195, 92, 249, 206, 186, 197, 234, 38, 44, 83, 13, 110, 133, 40, 132, 9, 211, 223, 205, 244, 65, 129, 77, 82, 106, 220, 55, 200, 108, 193, 171, 250, 36, 225, 123, 8, 12, 189, 177, 74, 120, 136, 149, 139, 227, 99, 232, 109, 233, 203, 213, 254, 59, 0, 29, 57, 242, 239, 183, 14, 102, 88, 208, 228, 166, 119, 114, 248, 235, 117, 75, 10, 49, 68, 80, 180, 143, 237, 31, 26, 219, 153, 141, 51, 159, 17, 131, 20 }; /*********************** FUNCTION DEFINITIONS ***********************/ void md2_transform(_MD2_CTX *ctx, BYTE data[]) { int j,k,t; //memcpy(&ctx->state[16], data); for (j=0; j < 16; ++j) { ctx->state[j + 16] = data[j]; ctx->state[j + 32] = (ctx->state[j+16] ^ ctx->state[j]); } t = 0; for (j = 0; j < 18; ++j) { for (k = 0; k < 48; ++k) { ctx->state[k] ^= s[t]; t = ctx->state[k]; } t = (t+j) & 0xFF; } t = ctx->checksum[15]; for (j=0; j < 16; ++j) { ctx->checksum[j] ^= s[data[j] ^ t]; t = ctx->checksum[j]; } } void md2_init(_MD2_CTX *ctx) { int i; for (i=0; i < 48; ++i) ctx->state[i] = 0; for (i=0; i < 16; ++i) ctx->checksum[i] = 0; ctx->len = 0; } void md2_update(_MD2_CTX *ctx, const BYTE data[], size_t len) { size_t i; for (i = 0; i < len; ++i) { ctx->data[ctx->len] = data[i]; ctx->len++; if (ctx->len == MD2_BLOCK_SIZE) { md2_transform(ctx, ctx->data); ctx->len = 0; } } } void md2_final(_MD2_CTX *ctx, BYTE hash[]) { int to_pad; to_pad = MD2_BLOCK_SIZE - ctx->len; while (ctx->len < MD2_BLOCK_SIZE) ctx->data[ctx->len++] = to_pad; md2_transform(ctx, ctx->data); md2_transform(ctx, ctx->checksum); memcpy(hash, ctx->state, MD2_BLOCK_SIZE); } // -------------------------------------------------- MD5 -------------------------------------------------- // /****************************** MACROS ******************************/ #define F(x,y,z) ((x & y) | (~x & z)) #define G(x,y,z) ((x & z) | (y & ~z)) #define H(x,y,z) (x ^ y ^ z) #define I(x,y,z) (y ^ (x | ~z)) #define FF(a,b,c,d,m,s,t) { a += F(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define GG(a,b,c,d,m,s,t) { a += G(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define HH(a,b,c,d,m,s,t) { a += H(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } #define II(a,b,c,d,m,s,t) { a += I(b,c,d) + m + t; \ a = b + ROTLEFT(a,s); } /*********************** FUNCTION DEFINITIONS ***********************/ void md5_transform(_MD5_CTX *ctx, const BYTE data[]) { UINT a, b, c, d, m[16], i, j; // MD5 specifies big endian byte order, but this implementation assumes a little // endian byte order CPU. Reverse all the bytes upon input, and re-reverse them // on output (in md5_final()). for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = (data[j]) + (data[j + 1] << 8) + (data[j + 2] << 16) + (data[j + 3] << 24); a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; FF(a,b,c,d,m[0], 7,0xd76aa478); FF(d,a,b,c,m[1], 12,0xe8c7b756); FF(c,d,a,b,m[2], 17,0x242070db); FF(b,c,d,a,m[3], 22,0xc1bdceee); FF(a,b,c,d,m[4], 7,0xf57c0faf); FF(d,a,b,c,m[5], 12,0x4787c62a); FF(c,d,a,b,m[6], 17,0xa8304613); FF(b,c,d,a,m[7], 22,0xfd469501); FF(a,b,c,d,m[8], 7,0x698098d8); FF(d,a,b,c,m[9], 12,0x8b44f7af); FF(c,d,a,b,m[10],17,0xffff5bb1); FF(b,c,d,a,m[11],22,0x895cd7be); FF(a,b,c,d,m[12], 7,0x6b901122); FF(d,a,b,c,m[13],12,0xfd987193); FF(c,d,a,b,m[14],17,0xa679438e); FF(b,c,d,a,m[15],22,0x49b40821); GG(a,b,c,d,m[1], 5,0xf61e2562); GG(d,a,b,c,m[6], 9,0xc040b340); GG(c,d,a,b,m[11],14,0x265e5a51); GG(b,c,d,a,m[0], 20,0xe9b6c7aa); GG(a,b,c,d,m[5], 5,0xd62f105d); GG(d,a,b,c,m[10], 9,0x02441453); GG(c,d,a,b,m[15],14,0xd8a1e681); GG(b,c,d,a,m[4], 20,0xe7d3fbc8); GG(a,b,c,d,m[9], 5,0x21e1cde6); GG(d,a,b,c,m[14], 9,0xc33707d6); GG(c,d,a,b,m[3], 14,0xf4d50d87); GG(b,c,d,a,m[8], 20,0x455a14ed); GG(a,b,c,d,m[13], 5,0xa9e3e905); GG(d,a,b,c,m[2], 9,0xfcefa3f8); GG(c,d,a,b,m[7], 14,0x676f02d9); GG(b,c,d,a,m[12],20,0x8d2a4c8a); HH(a,b,c,d,m[5], 4,0xfffa3942); HH(d,a,b,c,m[8], 11,0x8771f681); HH(c,d,a,b,m[11],16,0x6d9d6122); HH(b,c,d,a,m[14],23,0xfde5380c); HH(a,b,c,d,m[1], 4,0xa4beea44); HH(d,a,b,c,m[4], 11,0x4bdecfa9); HH(c,d,a,b,m[7], 16,0xf6bb4b60); HH(b,c,d,a,m[10],23,0xbebfbc70); HH(a,b,c,d,m[13], 4,0x289b7ec6); HH(d,a,b,c,m[0], 11,0xeaa127fa); HH(c,d,a,b,m[3], 16,0xd4ef3085); HH(b,c,d,a,m[6], 23,0x04881d05); HH(a,b,c,d,m[9], 4,0xd9d4d039); HH(d,a,b,c,m[12],11,0xe6db99e5); HH(c,d,a,b,m[15],16,0x1fa27cf8); HH(b,c,d,a,m[2], 23,0xc4ac5665); II(a,b,c,d,m[0], 6,0xf4292244); II(d,a,b,c,m[7], 10,0x432aff97); II(c,d,a,b,m[14],15,0xab9423a7); II(b,c,d,a,m[5], 21,0xfc93a039); II(a,b,c,d,m[12], 6,0x655b59c3); II(d,a,b,c,m[3], 10,0x8f0ccc92); II(c,d,a,b,m[10],15,0xffeff47d); II(b,c,d,a,m[1], 21,0x85845dd1); II(a,b,c,d,m[8], 6,0x6fa87e4f); II(d,a,b,c,m[15],10,0xfe2ce6e0); II(c,d,a,b,m[6], 15,0xa3014314); II(b,c,d,a,m[13],21,0x4e0811a1); II(a,b,c,d,m[4], 6,0xf7537e82); II(d,a,b,c,m[11],10,0xbd3af235); II(c,d,a,b,m[2], 15,0x2ad7d2bb); II(b,c,d,a,m[9], 21,0xeb86d391); ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; } void md5_init(_MD5_CTX *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; } void md5_update(_MD5_CTX *ctx, const BYTE data[], size_t len) { size_t i; for (i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { md5_transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void md5_final(_MD5_CTX *ctx, BYTE hash[]) { size_t i; i = ctx->datalen; // Pad whatever data is left in the buffer. if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) ctx->data[i++] = 0x00; } else if (ctx->datalen >= 56) { ctx->data[i++] = 0x80; while (i < 64) ctx->data[i++] = 0x00; md5_transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[56] = (BYTE)(ctx->bitlen); ctx->data[57] = (BYTE)(ctx->bitlen >> 8); ctx->data[58] = (BYTE)(ctx->bitlen >> 16); ctx->data[59] = (BYTE)(ctx->bitlen >> 24); ctx->data[60] = (BYTE)(ctx->bitlen >> 32); ctx->data[61] = (BYTE)(ctx->bitlen >> 40); ctx->data[62] = (BYTE)(ctx->bitlen >> 48); ctx->data[63] = (BYTE)(ctx->bitlen >> 56); md5_transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and MD uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (i * 8)) & 0x000000ff; } } // -------------------------------------------------- SHA1 -------------------------------------------------- // /****************************** MACROS ******************************/ /*********************** FUNCTION DEFINITIONS ***********************/ void sha1_transform(_SHA1_CTX *ctx, const BYTE data[]) { UINT a, b, c, d, e, i, j, t, m[80]; for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]); for ( ; i < 80; ++i) { m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]); m[i] = (m[i] << 1) | (m[i] >> 31); } a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; e = ctx->state[4]; for (i = 0; i < 20; ++i) { t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 40; ++i) { t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 60; ++i) { t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } for ( ; i < 80; ++i) { t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i]; e = d; d = c; c = ROTLEFT(b, 30); b = a; a = t; } ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; ctx->state[4] += e; } void sha1_init(_SHA1_CTX *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x67452301; ctx->state[1] = 0xEFCDAB89; ctx->state[2] = 0x98BADCFE; ctx->state[3] = 0x10325476; ctx->state[4] = 0xc3d2e1f0; ctx->k[0] = 0x5a827999; ctx->k[1] = 0x6ed9eba1; ctx->k[2] = 0x8f1bbcdc; ctx->k[3] = 0xca62c1d6; } void sha1_update(_SHA1_CTX *ctx, const BYTE data[], size_t len) { size_t i; for (i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { sha1_transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void sha1_final(_SHA1_CTX *ctx, BYTE hash[]) { UINT i; i = ctx->datalen; // Pad whatever data is left in the buffer. if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) ctx->data[i++] = 0x00; } else { ctx->data[i++] = 0x80; while (i < 64) ctx->data[i++] = 0x00; sha1_transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[63] = (BYTE)(ctx->bitlen); ctx->data[62] = (BYTE)(ctx->bitlen >> 8); ctx->data[61] = (BYTE)(ctx->bitlen >> 16); ctx->data[60] = (BYTE)(ctx->bitlen >> 24); ctx->data[59] = (BYTE)(ctx->bitlen >> 32); ctx->data[58] = (BYTE)(ctx->bitlen >> 40); ctx->data[57] = (BYTE)(ctx->bitlen >> 48); ctx->data[56] = (BYTE)(ctx->bitlen >> 56); sha1_transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and MD uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; } } // -------------------------------------------------- SHA256 -------------------------------------------------- // /****************************** MACROS ******************************/ #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22)) #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25)) #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10)) /**************************** VARIABLES *****************************/ static const UINT k[64] = { 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 }; /*********************** FUNCTION DEFINITIONS ***********************/ void sha256_transform(_SHA256_CTX *ctx, const BYTE data[]) { UINT a, b, c, d, e, f, g, h, i, j, t1, t2, m[64]; for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]); for ( ; i < 64; ++i) m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; a = ctx->state[0]; b = ctx->state[1]; c = ctx->state[2]; d = ctx->state[3]; e = ctx->state[4]; f = ctx->state[5]; g = ctx->state[6]; h = ctx->state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i]; t2 = EP0(a) + MAJ(a,b,c); h = g; g = f; f = e; e = d + t1; d = c; c = b; b = a; a = t1 + t2; } ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; ctx->state[4] += e; ctx->state[5] += f; ctx->state[6] += g; ctx->state[7] += h; } void sha256_init(_SHA256_CTX *ctx) { ctx->datalen = 0; ctx->bitlen = 0; ctx->state[0] = 0x6a09e667; ctx->state[1] = 0xbb67ae85; ctx->state[2] = 0x3c6ef372; ctx->state[3] = 0xa54ff53a; ctx->state[4] = 0x510e527f; ctx->state[5] = 0x9b05688c; ctx->state[6] = 0x1f83d9ab; ctx->state[7] = 0x5be0cd19; } void sha256_update(_SHA256_CTX *ctx, const BYTE data[], size_t len) { UINT i; for (i = 0; i < len; ++i) { ctx->data[ctx->datalen] = data[i]; ctx->datalen++; if (ctx->datalen == 64) { sha256_transform(ctx, ctx->data); ctx->bitlen += 512; ctx->datalen = 0; } } } void sha256_final(_SHA256_CTX *ctx, BYTE hash[]) { UINT i; i = ctx->datalen; // Pad whatever data is left in the buffer. if (ctx->datalen < 56) { ctx->data[i++] = 0x80; while (i < 56) ctx->data[i++] = 0x00; } else { ctx->data[i++] = 0x80; while (i < 64) ctx->data[i++] = 0x00; sha256_transform(ctx, ctx->data); memset(ctx->data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx->bitlen += ctx->datalen * 8; ctx->data[63] = (BYTE)(ctx->bitlen); ctx->data[62] = (BYTE)(ctx->bitlen >> 8); ctx->data[61] = (BYTE)(ctx->bitlen >> 16); ctx->data[60] = (BYTE)(ctx->bitlen >> 24); ctx->data[59] = (BYTE)(ctx->bitlen >> 32); ctx->data[58] = (BYTE)(ctx->bitlen >> 40); ctx->data[57] = (BYTE)(ctx->bitlen >> 48); ctx->data[56] = (BYTE)(ctx->bitlen >> 56); sha256_transform(ctx, ctx->data); // Since this implementation uses little endian byte ordering and SHA uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff; hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff; hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff; hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff; hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff; hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff; hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff; hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff; } } // -------------------------------------------------- ARCFOUR -------------------------------------------------- // /*********************** FUNCTION DEFINITIONS ***********************/ void arcfour_key_setup(BYTE state[], const BYTE key[], int len) { int i, j; BYTE t; for (i = 0; i < 256; ++i) state[i] = i; for (i = 0, j = 0; i < 256; ++i) { j = (j + state[i] + key[i % len]) % 256; t = state[i]; state[i] = state[j]; state[j] = t; } } // This does not hold state between calls. It always generates the // stream starting from the first output byte. void arcfour_generate_stream(BYTE state[], BYTE out[], size_t len) { int i, j; size_t idx; BYTE t; for (idx = 0, i = 0, j = 0; idx < len; ++idx) { i = (i + 1) % 256; j = (j + state[i]) % 256; t = state[i]; state[i] = state[j]; state[j] = t; out[idx] = state[(state[i] + state[j]) % 256]; } } // -------------------------------------------------- BLOWFISH -------------------------------------------------- // /****************************** MACROS ******************************/ #define BF(x,t) t = keystruct->s[0][(x) >> 24]; \ t += keystruct->s[1][((x) >> 16) & 0xff]; \ t ^= keystruct->s[2][((x) >> 8) & 0xff]; \ t += keystruct->s[3][(x) & 0xff]; #define swap(r,l,t) t = l; l = r; r = t; #define ITERATION(l,r,t,pval) l ^= keystruct->p[pval]; BF(l,t); r^= t; swap(r,l,t); /**************************** VARIABLES *****************************/ static const UINT p_perm[18] = { 0x243F6A88,0x85A308D3,0x13198A2E,0x03707344,0xA4093822,0x299F31D0,0x082EFA98, 0xEC4E6C89,0x452821E6,0x38D01377,0xBE5466CF,0x34E90C6C,0xC0AC29B7,0xC97C50DD, 0x3F84D5B5,0xB5470917,0x9216D5D9,0x8979FB1B }; static const UINT s_perm[4][256] = { { 0xD1310BA6,0x98DFB5AC,0x2FFD72DB,0xD01ADFB7,0xB8E1AFED,0x6A267E96,0xBA7C9045,0xF12C7F99, 0x24A19947,0xB3916CF7,0x0801F2E2,0x858EFC16,0x636920D8,0x71574E69,0xA458FEA3,0xF4933D7E, 0x0D95748F,0x728EB658,0x718BCD58,0x82154AEE,0x7B54A41D,0xC25A59B5,0x9C30D539,0x2AF26013, 0xC5D1B023,0x286085F0,0xCA417918,0xB8DB38EF,0x8E79DCB0,0x603A180E,0x6C9E0E8B,0xB01E8A3E, 0xD71577C1,0xBD314B27,0x78AF2FDA,0x55605C60,0xE65525F3,0xAA55AB94,0x57489862,0x63E81440, 0x55CA396A,0x2AAB10B6,0xB4CC5C34,0x1141E8CE,0xA15486AF,0x7C72E993,0xB3EE1411,0x636FBC2A, 0x2BA9C55D,0x741831F6,0xCE5C3E16,0x9B87931E,0xAFD6BA33,0x6C24CF5C,0x7A325381,0x28958677, 0x3B8F4898,0x6B4BB9AF,0xC4BFE81B,0x66282193,0x61D809CC,0xFB21A991,0x487CAC60,0x5DEC8032, 0xEF845D5D,0xE98575B1,0xDC262302,0xEB651B88,0x23893E81,0xD396ACC5,0x0F6D6FF3,0x83F44239, 0x2E0B4482,0xA4842004,0x69C8F04A,0x9E1F9B5E,0x21C66842,0xF6E96C9A,0x670C9C61,0xABD388F0, 0x6A51A0D2,0xD8542F68,0x960FA728,0xAB5133A3,0x6EEF0B6C,0x137A3BE4,0xBA3BF050,0x7EFB2A98, 0xA1F1651D,0x39AF0176,0x66CA593E,0x82430E88,0x8CEE8619,0x456F9FB4,0x7D84A5C3,0x3B8B5EBE, 0xE06F75D8,0x85C12073,0x401A449F,0x56C16AA6,0x4ED3AA62,0x363F7706,0x1BFEDF72,0x429B023D, 0x37D0D724,0xD00A1248,0xDB0FEAD3,0x49F1C09B,0x075372C9,0x80991B7B,0x25D479D8,0xF6E8DEF7, 0xE3FE501A,0xB6794C3B,0x976CE0BD,0x04C006BA,0xC1A94FB6,0x409F60C4,0x5E5C9EC2,0x196A2463, 0x68FB6FAF,0x3E6C53B5,0x1339B2EB,0x3B52EC6F,0x6DFC511F,0x9B30952C,0xCC814544,0xAF5EBD09, 0xBEE3D004,0xDE334AFD,0x660F2807,0x192E4BB3,0xC0CBA857,0x45C8740F,0xD20B5F39,0xB9D3FBDB, 0x5579C0BD,0x1A60320A,0xD6A100C6,0x402C7279,0x679F25FE,0xFB1FA3CC,0x8EA5E9F8,0xDB3222F8, 0x3C7516DF,0xFD616B15,0x2F501EC8,0xAD0552AB,0x323DB5FA,0xFD238760,0x53317B48,0x3E00DF82, 0x9E5C57BB,0xCA6F8CA0,0x1A87562E,0xDF1769DB,0xD542A8F6,0x287EFFC3,0xAC6732C6,0x8C4F5573, 0x695B27B0,0xBBCA58C8,0xE1FFA35D,0xB8F011A0,0x10FA3D98,0xFD2183B8,0x4AFCB56C,0x2DD1D35B, 0x9A53E479,0xB6F84565,0xD28E49BC,0x4BFB9790,0xE1DDF2DA,0xA4CB7E33,0x62FB1341,0xCEE4C6E8, 0xEF20CADA,0x36774C01,0xD07E9EFE,0x2BF11FB4,0x95DBDA4D,0xAE909198,0xEAAD8E71,0x6B93D5A0, 0xD08ED1D0,0xAFC725E0,0x8E3C5B2F,0x8E7594B7,0x8FF6E2FB,0xF2122B64,0x8888B812,0x900DF01C, 0x4FAD5EA0,0x688FC31C,0xD1CFF191,0xB3A8C1AD,0x2F2F2218,0xBE0E1777,0xEA752DFE,0x8B021FA1, 0xE5A0CC0F,0xB56F74E8,0x18ACF3D6,0xCE89E299,0xB4A84FE0,0xFD13E0B7,0x7CC43B81,0xD2ADA8D9, 0x165FA266,0x80957705,0x93CC7314,0x211A1477,0xE6AD2065,0x77B5FA86,0xC75442F5,0xFB9D35CF, 0xEBCDAF0C,0x7B3E89A0,0xD6411BD3,0xAE1E7E49,0x00250E2D,0x2071B35E,0x226800BB,0x57B8E0AF, 0x2464369B,0xF009B91E,0x5563911D,0x59DFA6AA,0x78C14389,0xD95A537F,0x207D5BA2,0x02E5B9C5, 0x83260376,0x6295CFA9,0x11C81968,0x4E734A41,0xB3472DCA,0x7B14A94A,0x1B510052,0x9A532915, 0xD60F573F,0xBC9BC6E4,0x2B60A476,0x81E67400,0x08BA6FB5,0x571BE91F,0xF296EC6B,0x2A0DD915, 0xB6636521,0xE7B9F9B6,0xFF34052E,0xC5855664,0x53B02D5D,0xA99F8FA1,0x08BA4799,0x6E85076A },{ 0x4B7A70E9,0xB5B32944,0xDB75092E,0xC4192623,0xAD6EA6B0,0x49A7DF7D,0x9CEE60B8,0x8FEDB266, 0xECAA8C71,0x699A17FF,0x5664526C,0xC2B19EE1,0x193602A5,0x75094C29,0xA0591340,0xE4183A3E, 0x3F54989A,0x5B429D65,0x6B8FE4D6,0x99F73FD6,0xA1D29C07,0xEFE830F5,0x4D2D38E6,0xF0255DC1, 0x4CDD2086,0x8470EB26,0x6382E9C6,0x021ECC5E,0x09686B3F,0x3EBAEFC9,0x3C971814,0x6B6A70A1, 0x687F3584,0x52A0E286,0xB79C5305,0xAA500737,0x3E07841C,0x7FDEAE5C,0x8E7D44EC,0x5716F2B8, 0xB03ADA37,0xF0500C0D,0xF01C1F04,0x0200B3FF,0xAE0CF51A,0x3CB574B2,0x25837A58,0xDC0921BD, 0xD19113F9,0x7CA92FF6,0x94324773,0x22F54701,0x3AE5E581,0x37C2DADC,0xC8B57634,0x9AF3DDA7, 0xA9446146,0x0FD0030E,0xECC8C73E,0xA4751E41,0xE238CD99,0x3BEA0E2F,0x3280BBA1,0x183EB331, 0x4E548B38,0x4F6DB908,0x6F420D03,0xF60A04BF,0x2CB81290,0x24977C79,0x5679B072,0xBCAF89AF, 0xDE9A771F,0xD9930810,0xB38BAE12,0xDCCF3F2E,0x5512721F,0x2E6B7124,0x501ADDE6,0x9F84CD87, 0x7A584718,0x7408DA17,0xBC9F9ABC,0xE94B7D8C,0xEC7AEC3A,0xDB851DFA,0x63094366,0xC464C3D2, 0xEF1C1847,0x3215D908,0xDD433B37,0x24C2BA16,0x12A14D43,0x2A65C451,0x50940002,0x133AE4DD, 0x71DFF89E,0x10314E55,0x81AC77D6,0x5F11199B,0x043556F1,0xD7A3C76B,0x3C11183B,0x5924A509, 0xF28FE6ED,0x97F1FBFA,0x9EBABF2C,0x1E153C6E,0x86E34570,0xEAE96FB1,0x860E5E0A,0x5A3E2AB3, 0x771FE71C,0x4E3D06FA,0x2965DCB9,0x99E71D0F,0x803E89D6,0x5266C825,0x2E4CC978,0x9C10B36A, 0xC6150EBA,0x94E2EA78,0xA5FC3C53,0x1E0A2DF4,0xF2F74EA7,0x361D2B3D,0x1939260F,0x19C27960, 0x5223A708,0xF71312B6,0xEBADFE6E,0xEAC31F66,0xE3BC4595,0xA67BC883,0xB17F37D1,0x018CFF28, 0xC332DDEF,0xBE6C5AA5,0x65582185,0x68AB9802,0xEECEA50F,0xDB2F953B,0x2AEF7DAD,0x5B6E2F84, 0x1521B628,0x29076170,0xECDD4775,0x619F1510,0x13CCA830,0xEB61BD96,0x0334FE1E,0xAA0363CF, 0xB5735C90,0x4C70A239,0xD59E9E0B,0xCBAADE14,0xEECC86BC,0x60622CA7,0x9CAB5CAB,0xB2F3846E, 0x648B1EAF,0x19BDF0CA,0xA02369B9,0x655ABB50,0x40685A32,0x3C2AB4B3,0x319EE9D5,0xC021B8F7, 0x9B540B19,0x875FA099,0x95F7997E,0x623D7DA8,0xF837889A,0x97E32D77,0x11ED935F,0x16681281, 0x0E358829,0xC7E61FD6,0x96DEDFA1,0x7858BA99,0x57F584A5,0x1B227263,0x9B83C3FF,0x1AC24696, 0xCDB30AEB,0x532E3054,0x8FD948E4,0x6DBC3128,0x58EBF2EF,0x34C6FFEA,0xFE28ED61,0xEE7C3C73, 0x5D4A14D9,0xE864B7E3,0x42105D14,0x203E13E0,0x45EEE2B6,0xA3AAABEA,0xDB6C4F15,0xFACB4FD0, 0xC742F442,0xEF6ABBB5,0x654F3B1D,0x41CD2105,0xD81E799E,0x86854DC7,0xE44B476A,0x3D816250, 0xCF62A1F2,0x5B8D2646,0xFC8883A0,0xC1C7B6A3,0x7F1524C3,0x69CB7492,0x47848A0B,0x5692B285, 0x095BBF00,0xAD19489D,0x1462B174,0x23820E00,0x58428D2A,0x0C55F5EA,0x1DADF43E,0x233F7061, 0x3372F092,0x8D937E41,0xD65FECF1,0x6C223BDB,0x7CDE3759,0xCBEE7460,0x4085F2A7,0xCE77326E, 0xA6078084,0x19F8509E,0xE8EFD855,0x61D99735,0xA969A7AA,0xC50C06C2,0x5A04ABFC,0x800BCADC, 0x9E447A2E,0xC3453484,0xFDD56705,0x0E1E9EC9,0xDB73DBD3,0x105588CD,0x675FDA79,0xE3674340, 0xC5C43465,0x713E38D8,0x3D28F89E,0xF16DFF20,0x153E21E7,0x8FB03D4A,0xE6E39F2B,0xDB83ADF7 },{ 0xE93D5A68,0x948140F7,0xF64C261C,0x94692934,0x411520F7,0x7602D4F7,0xBCF46B2E,0xD4A20068, 0xD4082471,0x3320F46A,0x43B7D4B7,0x500061AF,0x1E39F62E,0x97244546,0x14214F74,0xBF8B8840, 0x4D95FC1D,0x96B591AF,0x70F4DDD3,0x66A02F45,0xBFBC09EC,0x03BD9785,0x7FAC6DD0,0x31CB8504, 0x96EB27B3,0x55FD3941,0xDA2547E6,0xABCA0A9A,0x28507825,0x530429F4,0x0A2C86DA,0xE9B66DFB, 0x68DC1462,0xD7486900,0x680EC0A4,0x27A18DEE,0x4F3FFEA2,0xE887AD8C,0xB58CE006,0x7AF4D6B6, 0xAACE1E7C,0xD3375FEC,0xCE78A399,0x406B2A42,0x20FE9E35,0xD9F385B9,0xEE39D7AB,0x3B124E8B, 0x1DC9FAF7,0x4B6D1856,0x26A36631,0xEAE397B2,0x3A6EFA74,0xDD5B4332,0x6841E7F7,0xCA7820FB, 0xFB0AF54E,0xD8FEB397,0x454056AC,0xBA489527,0x55533A3A,0x20838D87,0xFE6BA9B7,0xD096954B, 0x55A867BC,0xA1159A58,0xCCA92963,0x99E1DB33,0xA62A4A56,0x3F3125F9,0x5EF47E1C,0x9029317C, 0xFDF8E802,0x04272F70,0x80BB155C,0x05282CE3,0x95C11548,0xE4C66D22,0x48C1133F,0xC70F86DC, 0x07F9C9EE,0x41041F0F,0x404779A4,0x5D886E17,0x325F51EB,0xD59BC0D1,0xF2BCC18F,0x41113564, 0x257B7834,0x602A9C60,0xDFF8E8A3,0x1F636C1B,0x0E12B4C2,0x02E1329E,0xAF664FD1,0xCAD18115, 0x6B2395E0,0x333E92E1,0x3B240B62,0xEEBEB922,0x85B2A20E,0xE6BA0D99,0xDE720C8C,0x2DA2F728, 0xD0127845,0x95B794FD,0x647D0862,0xE7CCF5F0,0x5449A36F,0x877D48FA,0xC39DFD27,0xF33E8D1E, 0x0A476341,0x992EFF74,0x3A6F6EAB,0xF4F8FD37,0xA812DC60,0xA1EBDDF8,0x991BE14C,0xDB6E6B0D, 0xC67B5510,0x6D672C37,0x2765D43B,0xDCD0E804,0xF1290DC7,0xCC00FFA3,0xB5390F92,0x690FED0B, 0x667B9FFB,0xCEDB7D9C,0xA091CF0B,0xD9155EA3,0xBB132F88,0x515BAD24,0x7B9479BF,0x763BD6EB, 0x37392EB3,0xCC115979,0x8026E297,0xF42E312D,0x6842ADA7,0xC66A2B3B,0x12754CCC,0x782EF11C, 0x6A124237,0xB79251E7,0x06A1BBE6,0x4BFB6350,0x1A6B1018,0x11CAEDFA,0x3D25BDD8,0xE2E1C3C9, 0x44421659,0x0A121386,0xD90CEC6E,0xD5ABEA2A,0x64AF674E,0xDA86A85F,0xBEBFE988,0x64E4C3FE, 0x9DBC8057,0xF0F7C086,0x60787BF8,0x6003604D,0xD1FD8346,0xF6381FB0,0x7745AE04,0xD736FCCC, 0x83426B33,0xF01EAB71,0xB0804187,0x3C005E5F,0x77A057BE,0xBDE8AE24,0x55464299,0xBF582E61, 0x4E58F48F,0xF2DDFDA2,0xF474EF38,0x8789BDC2,0x5366F9C3,0xC8B38E74,0xB475F255,0x46FCD9B9, 0x7AEB2661,0x8B1DDF84,0x846A0E79,0x915F95E2,0x466E598E,0x20B45770,0x8CD55591,0xC902DE4C, 0xB90BACE1,0xBB8205D0,0x11A86248,0x7574A99E,0xB77F19B6,0xE0A9DC09,0x662D09A1,0xC4324633, 0xE85A1F02,0x09F0BE8C,0x4A99A025,0x1D6EFE10,0x1AB93D1D,0x0BA5A4DF,0xA186F20F,0x2868F169, 0xDCB7DA83,0x573906FE,0xA1E2CE9B,0x4FCD7F52,0x50115E01,0xA70683FA,0xA002B5C4,0x0DE6D027, 0x9AF88C27,0x773F8641,0xC3604C06,0x61A806B5,0xF0177A28,0xC0F586E0,0x006058AA,0x30DC7D62, 0x11E69ED7,0x2338EA63,0x53C2DD94,0xC2C21634,0xBBCBEE56,0x90BCB6DE,0xEBFC7DA1,0xCE591D76, 0x6F05E409,0x4B7C0188,0x39720A3D,0x7C927C24,0x86E3725F,0x724D9DB9,0x1AC15BB4,0xD39EB8FC, 0xED545578,0x08FCA5B5,0xD83D7CD3,0x4DAD0FC4,0x1E50EF5E,0xB161E6F8,0xA28514D9,0x6C51133C, 0x6FD5C7E7,0x56E14EC4,0x362ABFCE,0xDDC6C837,0xD79A3234,0x92638212,0x670EFA8E,0x406000E0 },{ 0x3A39CE37,0xD3FAF5CF,0xABC27737,0x5AC52D1B,0x5CB0679E,0x4FA33742,0xD3822740,0x99BC9BBE, 0xD5118E9D,0xBF0F7315,0xD62D1C7E,0xC700C47B,0xB78C1B6B,0x21A19045,0xB26EB1BE,0x6A366EB4, 0x5748AB2F,0xBC946E79,0xC6A376D2,0x6549C2C8,0x530FF8EE,0x468DDE7D,0xD5730A1D,0x4CD04DC6, 0x2939BBDB,0xA9BA4650,0xAC9526E8,0xBE5EE304,0xA1FAD5F0,0x6A2D519A,0x63EF8CE2,0x9A86EE22, 0xC089C2B8,0x43242EF6,0xA51E03AA,0x9CF2D0A4,0x83C061BA,0x9BE96A4D,0x8FE51550,0xBA645BD6, 0x2826A2F9,0xA73A3AE1,0x4BA99586,0xEF5562E9,0xC72FEFD3,0xF752F7DA,0x3F046F69,0x77FA0A59, 0x80E4A915,0x87B08601,0x9B09E6AD,0x3B3EE593,0xE990FD5A,0x9E34D797,0x2CF0B7D9,0x022B8B51, 0x96D5AC3A,0x017DA67D,0xD1CF3ED6,0x7C7D2D28,0x1F9F25CF,0xADF2B89B,0x5AD6B472,0x5A88F54C, 0xE029AC71,0xE019A5E6,0x47B0ACFD,0xED93FA9B,0xE8D3C48D,0x283B57CC,0xF8D56629,0x79132E28, 0x785F0191,0xED756055,0xF7960E44,0xE3D35E8C,0x15056DD4,0x88F46DBA,0x03A16125,0x0564F0BD, 0xC3EB9E15,0x3C9057A2,0x97271AEC,0xA93A072A,0x1B3F6D9B,0x1E6321F5,0xF59C66FB,0x26DCF319, 0x7533D928,0xB155FDF5,0x03563482,0x8ABA3CBB,0x28517711,0xC20AD9F8,0xABCC5167,0xCCAD925F, 0x4DE81751,0x3830DC8E,0x379D5862,0x9320F991,0xEA7A90C2,0xFB3E7BCE,0x5121CE64,0x774FBE32, 0xA8B6E37E,0xC3293D46,0x48DE5369,0x6413E680,0xA2AE0810,0xDD6DB224,0x69852DFD,0x09072166, 0xB39A460A,0x6445C0DD,0x586CDECF,0x1C20C8AE,0x5BBEF7DD,0x1B588D40,0xCCD2017F,0x6BB4E3BB, 0xDDA26A7E,0x3A59FF45,0x3E350A44,0xBCB4CDD5,0x72EACEA8,0xFA6484BB,0x8D6612AE,0xBF3C6F47, 0xD29BE463,0x542F5D9E,0xAEC2771B,0xF64E6370,0x740E0D8D,0xE75B1357,0xF8721671,0xAF537D5D, 0x4040CB08,0x4EB4E2CC,0x34D2466A,0x0115AF84,0xE1B00428,0x95983A1D,0x06B89FB4,0xCE6EA048, 0x6F3F3B82,0x3520AB82,0x011A1D4B,0x277227F8,0x611560B1,0xE7933FDC,0xBB3A792B,0x344525BD, 0xA08839E1,0x51CE794B,0x2F32C9B7,0xA01FBAC9,0xE01CC87E,0xBCC7D1F6,0xCF0111C3,0xA1E8AAC7, 0x1A908749,0xD44FBD9A,0xD0DADECB,0xD50ADA38,0x0339C32A,0xC6913667,0x8DF9317C,0xE0B12B4F, 0xF79E59B7,0x43F5BB3A,0xF2D519FF,0x27D9459C,0xBF97222C,0x15E6FC2A,0x0F91FC71,0x9B941525, 0xFAE59361,0xCEB69CEB,0xC2A86459,0x12BAA8D1,0xB6C1075E,0xE3056A0C,0x10D25065,0xCB03A442, 0xE0EC6E0E,0x1698DB3B,0x4C98A0BE,0x3278E964,0x9F1F9532,0xE0D392DF,0xD3A0342B,0x8971F21E, 0x1B0A7441,0x4BA3348C,0xC5BE7120,0xC37632D8,0xDF359F8D,0x9B992F2E,0xE60B6F47,0x0FE3F11D, 0xE54CDA54,0x1EDAD891,0xCE6279CF,0xCD3E7E6F,0x1618B166,0xFD2C1D05,0x848FD2C5,0xF6FB2299, 0xF523F357,0xA6327623,0x93A83531,0x56CCCD02,0xACF08162,0x5A75EBB5,0x6E163697,0x88D273CC, 0xDE966292,0x81B949D0,0x4C50901B,0x71C65614,0xE6C6C7BD,0x327A140A,0x45E1D006,0xC3F27B9A, 0xC9AA53FD,0x62A80F00,0xBB25BFE2,0x35BDD2F6,0x71126905,0xB2040222,0xB6CBCF7C,0xCD769C2B, 0x53113EC0,0x1640E3D3,0x38ABBD60,0x2547ADF0,0xBA38209C,0xF746CE76,0x77AFA1C5,0x20756060, 0x85CBFE4E,0x8AE88DD8,0x7AAAF9B0,0x4CF9AA7E,0x1948C25C,0x02FB8A8C,0x01C36AE4,0xD6EBE1F9, 0x90D4F869,0xA65CDEA0,0x3F09252D,0xC208E69F,0xB74E6132,0xCE77E25B,0x578FDFE3,0x3AC372E6 } }; /*********************** FUNCTION DEFINITIONS ***********************/ void blowfish_encrypt(const BYTE in[], BYTE out[], const _BLOWFISH_KEY *keystruct) { UINT l,r,t; //,i; l = (in[0] << 24) | (in[1] << 16) | (in[2] << 8) | (in[3]); r = (in[4] << 24) | (in[5] << 16) | (in[6] << 8) | (in[7]); ITERATION(l,r,t,0); ITERATION(l,r,t,1); ITERATION(l,r,t,2); ITERATION(l,r,t,3); ITERATION(l,r,t,4); ITERATION(l,r,t,5); ITERATION(l,r,t,6); ITERATION(l,r,t,7); ITERATION(l,r,t,8); ITERATION(l,r,t,9); ITERATION(l,r,t,10); ITERATION(l,r,t,11); ITERATION(l,r,t,12); ITERATION(l,r,t,13); ITERATION(l,r,t,14); l ^= keystruct->p[15]; BF(l,t); r^= t; //Last iteration has no swap() r ^= keystruct->p[16]; l ^= keystruct->p[17]; out[0] = l >> 24; out[1] = l >> 16; out[2] = l >> 8; out[3] = l; out[4] = r >> 24; out[5] = r >> 16; out[6] = r >> 8; out[7] = r; } void blowfish_decrypt(const BYTE in[], BYTE out[], const _BLOWFISH_KEY *keystruct) { UINT l,r,t; //,i; l = (in[0] << 24) | (in[1] << 16) | (in[2] << 8) | (in[3]); r = (in[4] << 24) | (in[5] << 16) | (in[6] << 8) | (in[7]); ITERATION(l,r,t,17); ITERATION(l,r,t,16); ITERATION(l,r,t,15); ITERATION(l,r,t,14); ITERATION(l,r,t,13); ITERATION(l,r,t,12); ITERATION(l,r,t,11); ITERATION(l,r,t,10); ITERATION(l,r,t,9); ITERATION(l,r,t,8); ITERATION(l,r,t,7); ITERATION(l,r,t,6); ITERATION(l,r,t,5); ITERATION(l,r,t,4); ITERATION(l,r,t,3); l ^= keystruct->p[2]; BF(l,t); r^= t; //Last iteration has no swap() r ^= keystruct->p[1]; l ^= keystruct->p[0]; out[0] = l >> 24; out[1] = l >> 16; out[2] = l >> 8; out[3] = l; out[4] = r >> 24; out[5] = r >> 16; out[6] = r >> 8; out[7] = r; } void blowfish_key_setup(const BYTE user_key[], _BLOWFISH_KEY *keystruct, size_t len) { BYTE block[8]; int idx,idx2; // Copy over the constant init array vals (so the originals aren't destroyed). memcpy(keystruct->p,p_perm,sizeof(UINT) * 18); memcpy(keystruct->s,s_perm,sizeof(UINT) * 1024); // Combine the key with the P box. Assume key is standard 448 bits (56 bytes) or less. for (idx = 0, idx2 = 0; idx < 18; ++idx, idx2 += 4) keystruct->p[idx] ^= (user_key[idx2 % len] << 24) | (user_key[(idx2+1) % len] << 16) | (user_key[(idx2+2) % len] << 8) | (user_key[(idx2+3) % len]); // Re-calculate the P box. memset(block, 0, 8); for (idx = 0; idx < 18; idx += 2) { blowfish_encrypt(block,block,keystruct); keystruct->p[idx] = (block[0] << 24) | (block[1] << 16) | (block[2] << 8) | block[3]; keystruct->p[idx+1]=(block[4] << 24) | (block[5] << 16) | (block[6] << 8) | block[7]; } // Recalculate the S-boxes. for (idx = 0; idx < 4; ++idx) { for (idx2 = 0; idx2 < 256; idx2 += 2) { blowfish_encrypt(block,block,keystruct); keystruct->s[idx][idx2] = (block[0] << 24) | (block[1] << 16) | (block[2] << 8) | block[3]; keystruct->s[idx][idx2+1] = (block[4] << 24) | (block[5] << 16) | (block[6] << 8) | block[7]; } } } // -------------------------------------------------- ROT-13 -------------------------------------------------- // /*********************** FUNCTION DEFINITIONS ***********************/ void rot13(char str[]) { int case_type, idx, len; for (idx = 0, len = (int)strlen(str); idx < len; idx++) { // Only process alphabetic characters. if (str[idx] < 'A' || (str[idx] > 'Z' && str[idx] < 'a') || str[idx] > 'z') continue; // Determine if the char is upper or lower case. if (str[idx] >= 'a') case_type = 'a'; else case_type = 'A'; // Rotate the char's value, ensuring it doesn't accidentally "fall off" the end. str[idx] = (str[idx] + 13) % (case_type + 26); if (str[idx] < 26) str[idx] += case_type; } } #ifdef __GNUC__ #pragma GCC diagnostic pop #endif