mlir-hlo/tests/lhlo_gpu_ops.mlir

227 lines
11 KiB
MLIR
Raw Normal View History

// RUN: mlir-hlo-opt %s -verify-diagnostics -split-input-file | mlir-hlo-opt | FileCheck %s
// CHECK-LABEL: func @batch_norm_grad_memrefs
func @batch_norm_grad_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%arg3: memref<8xf32>, %arg4: memref<8x8x8x8xf32>,
%grad_operand: memref<8x8x8x8xf32>, %grad_scale: memref<8xf32>,
%grad_offset: memref<8xf32>) -> () {
"lmhlo_gpu.batch_norm_grad"(%arg0, %arg1, %arg2, %arg3, %arg4, %grad_operand, %grad_scale, %grad_offset) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>,
memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>) -> ()
return
}
// CHECK-LABEL: func @batch_norm_inference_memrefs
func @batch_norm_inference_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%arg3: memref<8xf32>, %arg4: memref<8xf32>, %arg_out: memref<8x8x8x8xf32>) -> () {
"lmhlo_gpu.batch_norm_inference"(%arg0, %arg1, %arg2, %arg3, %arg4, %arg_out) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>) -> ()
return
}
// CHECK-LABEL: func @batch_norm_training_memrefs
func @batch_norm_training_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%output: memref<8x8x8x8xf32>, %batch_mean: memref<8xf32>,
%batch_var: memref<8xf32>) -> () {
"lmhlo_gpu.batch_norm_training"(%arg0, %arg1, %arg2, %output, %batch_mean, %batch_var) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>) -> ()
return
}
// CHECK-LABEL: func @conv_forward
func @conv_forward(%input : memref<1x1x8x8xf16>, %filter: memref<1x1x2x2xf16>, %output: memref<1x1x7x7xf16>) {
%scratch = alloc() : memref<32xi8>
// This defined a 2D convolution over a 8x8 single channel input using a 2x2
// filter and with an output of 7x7xf16. The 1x1x8x8 is (N, C, H, W)
"lmhlo_gpu.conv_forward"(%input, %filter, %output, %scratch)
{ dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 1 : i64,
input_spatial_dimensions = dense<[2,3]> : tensor<2xi64>,
kernel_input_feature_dimension = 0 : i64,
kernel_output_feature_dimension = 1 : i64,
kernel_spatial_dimensions = dense<[2,3]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 1 : i64,
output_spatial_dimensions = dense<[2,3]> : tensor<2xi64>},
window_strides = dense<[1, 1]> : tensor<2xi64>,
padding = dense<[0,0]> : tensor<2xi64>,
lhs_dilation = dense<[1,1]> : tensor<2xi64>,
rhs_dilation = dense<[1,1]> : tensor<2xi64>,
feature_group_count = 1,
batch_group_count = 1,
result_scale = 1.0,
backend_config = {algorithm=0,
operand_0_layout = [3,2,1,0],
operand_1_layout = [3,2,1,0],
result_layout = [3,2,1,0],
tensor_ops_enabled = true}}
: (memref<1x1x8x8xf16>, memref<1x1x2x2xf16>, memref<1x1x7x7xf16>, memref<32xi8>) -> ()
return
}
// CHECK-LABEL: func @conv_backfilter
func @conv_backfilter(%input : memref<3x56x56x16xf64>, %filter: memref<3x3x3x64xf64>, %output: memref<54x54x16x64xf64>) {
%scratch = alloc() : memref<23328xui8>
"lmhlo_gpu.conv_backwardfilter"(%input, %filter, %output, %scratch)
{ backend_config = {algorithm = 1 : i64,
operand_0_layout = [3,2,1,0],
operand_1_layout = [3,2,1,0],
result_layout = [3,2,1,0],
tensor_ops_enabled = false},
batch_group_count = 1 : i64,
dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 3 : i64,
input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>,
kernel_input_feature_dimension = 2 : i64,
kernel_output_feature_dimension = 3 : i64,
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 3 : i64,
output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>},
feature_group_count = 1 : i64,
lhs_dilation = dense<1> : tensor<2xi64>,
padding = dense<0> : tensor<2xi64>,
precision_config = [],
result_scale = 1.000000e+00 : f64,
rhs_dilation = dense<1> : tensor<2xi64>,
window_strides = dense<1> : tensor<2xi64>}
: (memref<3x56x56x16xf64>, memref<3x3x3x64xf64>, memref<54x54x16x64xf64>, memref<23328xui8>) -> ()
return
}
// CHECK-LABEL: func @conv_backinput
func @conv_backinput(%input : memref<4x5x16x16xf64>, %filter : memref<5x3x7x7xf64>, %output : memref<4x3x16x16xf64>) {
%scratch = alloc() : memref<32xui8>
"lmhlo_gpu.conv_backwardinput"(%input, %filter, %output, %scratch)
{ backend_config = {algorithm = 1 : i64,
operand_0_layout = [3,2,1,0],
operand_1_layout = [3,2,1,0],
result_layout = [3,2,1,0],
tensor_ops_enabled = false},
batch_group_count = 1 : i64,
dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 1 : i64,
input_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>,
kernel_input_feature_dimension = 1 : i64,
kernel_output_feature_dimension = 0 : i64,
kernel_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 1 : i64,
output_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>},
feature_group_count = 1 : i64,
lhs_dilation = dense<1> : tensor<2xi64>,
padding = dense<3> : tensor<2xi64>,
precision_config = [],
result_scale = 1.000000e+00 : f64,
rhs_dilation = dense<1> : tensor<2xi64>,
window_strides = dense<1> : tensor<2xi64>,
window_reversal = dense<true>: tensor<2xi1>}
: (memref<4x5x16x16xf64>, memref<5x3x7x7xf64>, memref<4x3x16x16xf64>, memref<32xui8>) -> ()
return
}
// CHECK-LABEL: func @conv_fused
func @conv_fused(%input : memref<1x17x9x9xf16>, %filter : memref<3x3x17x32xf16>, %bias : memref<32xf16>, %output : memref<1x32x9x9xf16>) {
%scratch = alloc() : memref<32xui8>
"lmhlo_gpu.conv_forward_fused"(%input, %filter, %bias, %output, %scratch)
{activation_mode = "Relu",
backend_config = {algorithm = 1 : i64,
operand_0_layout = [3,2,1,0],
operand_1_layout = [3,2,1,0],
result_layout = [3,2,1,0],
tensor_ops_enabled = false},
batch_group_count = 1 : i64,
dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 1 : i64,
input_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>,
kernel_input_feature_dimension = 2 : i64,
kernel_output_feature_dimension = 3 : i64,
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 1 : i64,
output_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>},
feature_group_count = 1 : i64,
lhs_dilation = dense<1> : tensor<2xi64>,
padding = dense<1> : tensor<2xi64>,
precision_config = ["DEFAULT", "DEFAULT", "DEFAULT"],
result_scale = 1.000000e+00 : f64,
rhs_dilation = dense<1> : tensor<2xi64>,
window_strides = dense<1> : tensor<2xi64>}
: (memref<1x17x9x9xf16>, memref<3x3x17x32xf16>, memref<32xf16>, memref<1x32x9x9xf16>, memref<32xui8>) -> ()
return
}
// CHECK-LABEL: func @conv_fused_side_input
func @conv_fused_side_input(%input : memref<1x17x9x9xf16>, %filter : memref<3x3x17x32xf16>, %bias : memref<32xf16>, %side_input: memref<32xf16>, %output : memref<1x32x9x9xf16>) {
%scratch = alloc() : memref<0xui8>
"lmhlo_gpu.conv_forward_fused_with_side_input"(%input, %filter, %bias, %side_input, %output, %scratch)
{activation_mode = "Relu",
backend_config = {algorithm = 1 : i64,
operand_0_layout = [3,2,1,0],
operand_1_layout = [3,2,1,0],
result_layout = [3,2,1,0],
tensor_ops_enabled = false},
batch_group_count = 1 : i64,
dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 1 : i64,
input_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>,
kernel_input_feature_dimension = 2 : i64,
kernel_output_feature_dimension = 3 : i64,
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 1 : i64,
output_spatial_dimensions = dense<[2, 3]> : tensor<2xi64>},
feature_group_count = 1 : i64,
lhs_dilation = dense<1> : tensor<2xi64>,
padding = dense<1> : tensor<2xi64>,
precision_config = ["DEFAULT", "DEFAULT", "DEFAULT"],
result_scale = 1.000000e+00 : f64,
rhs_dilation = dense<1> : tensor<2xi64>,
side_input_scale = 1.000000e+00 : f64,
window_strides = dense<1> : tensor<2xi64>}
: (memref<1x17x9x9xf16>, memref<3x3x17x32xf16>, memref<32xf16>, memref<32xf16>, memref<1x32x9x9xf16>, memref<0xui8>) -> ()
return
}
// CHECK-LABEL: func @gemm
func @gemm(%lhs: memref<5x4xf32>, %rhs: memref<4x5xf32>, %output:memref<5x5xf32>) {
"lmhlo_gpu.gemm"(%lhs, %rhs, %output) { dot_dimension_numbers = {
lhs_batching_dimensions = dense<[1,1]> : tensor<2xi64>,
rhs_batching_dimensions = dense<[1,1]> : tensor<2xi64>,
lhs_contracting_dimensions = dense<[1,1]> : tensor<2xi64>,
rhs_contracting_dimensions = dense<[1,1]> : tensor<2xi64>},
alpha_real = 0.5,
alpha_imag = 0.0,
batch_size = 1,
algorithm = 0}
: (memref<5x4xf32>, memref<4x5xf32>, memref<5x5xf32>) -> ()
return
}
// CHECK-LABEL: func @gemm_bias
func @gemm_bias(%lhs: memref<5x4xf32>, %rhs: memref<4x5xf32>,
%bias: memref<5x5xf32>, %output:memref<5x5xf32>) {
"lmhlo_gpu.gemm_bias"(%lhs, %rhs, %bias, %output) { dot_dimension_numbers = {
lhs_batching_dimensions = dense<[1,1]> : tensor<2xi64>,
rhs_batching_dimensions = dense<[1,1]> : tensor<2xi64>,
lhs_contracting_dimensions = dense<[1,1]> : tensor<2xi64>,
rhs_contracting_dimensions = dense<[1,1]> : tensor<2xi64>},
alpha_real = 0.5,
alpha_imag = 0.0,
beta = 1.0,
batch_size = 1,
algorithm = 0}
: (memref<5x4xf32>, memref<4x5xf32>, memref<5x5xf32>, memref<5x5xf32>) -> ()
return
}
// CHECK-LABEL: func @cholesky
func @cholesky(%arg : memref<10x10xf32>, %out: memref<10x10xf32>) {
%scratch = alloc() : memref<32xi8>
%info = alloc() : memref<32xi32>
"lmhlo_gpu.cholesky"(%arg, %out, %scratch, %info) { is_lower = true }
: (memref<10x10xf32>, memref<10x10xf32>, memref<32xi8>, memref<32xi32>) -> ()
return
}