mlir-hlo/lib/Dialect/mhlo/transforms/lhlo_legalize_to_affine.cc

253 lines
9.7 KiB
C++
Raw Normal View History

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// This file implements logic for lowering LHLO dialect to Affine dialect.
#include "mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h"
#include "mlir-hlo/Dialect/mhlo/transforms/PassDetail.h"
#include "mlir-hlo/Dialect/mhlo/transforms/map_lmhlo_to_scalar_op.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
namespace lmhlo {
namespace {
// Builds an affine loop nest iterating from zeros to "upper_bounds" with unit
// steps, and populates the body of the innermost loop using "body_builder".
static void BuildBoundedAffineLoopNest(
OpBuilder& builder, Location location, ArrayRef<int64_t> upper_bounds,
function_ref<void(OpBuilder&, Location, ValueRange)> body_builder) {
SmallVector<int64_t, 3> lower_bounds(upper_bounds.size(), /*Value=*/0);
SmallVector<int64_t, 3> steps(upper_bounds.size(), /*Value=*/1);
buildAffineLoopNest(builder, location, lower_bounds, upper_bounds, steps,
body_builder);
}
struct DotOpConverter : public OpRewritePattern<DotOp> {
using OpRewritePattern<DotOp>::OpRewritePattern;
// Supports only rank-2 tensors for LHS and RHS.
LogicalResult matchAndRewrite(DotOp op,
PatternRewriter& rewriter) const override {
Value lhs = op.lhs();
Value rhs = op.rhs();
MemRefType lhs_type = lhs.getType().cast<MemRefType>();
MemRefType rhs_type = rhs.getType().cast<MemRefType>();
Type element_type = lhs_type.getElementType();
ArrayRef<int64_t> shape_lhs = lhs_type.getShape();
ArrayRef<int64_t> shape_rhs = rhs_type.getShape();
if ((lhs_type.getRank() != 2) || (rhs_type.getRank() != 2)) {
return failure();
}
// We don't currently support batching dimensions, or multiple contraction
// dimensions.
mhlo::DotDimensionNumbers dot_dimension_numbers =
op.dot_dimension_numbers();
if (dot_dimension_numbers.lhs_batching_dimensions().size() > 0 ||
dot_dimension_numbers.rhs_batching_dimensions().size() > 0)
return failure();
if (dot_dimension_numbers.lhs_contracting_dimensions().size() != 1 ||
*dot_dimension_numbers.lhs_contracting_dimensions().begin() != 1 ||
dot_dimension_numbers.rhs_contracting_dimensions().size() != 1 ||
*dot_dimension_numbers.rhs_contracting_dimensions().begin() != 0) {
return failure();
}
LogicalResult map_status = success();
auto body_builder = [&](OpBuilder& builder, Location loc, ValueRange ivs) {
SmallVector<Value, 2> lhs_indices{ivs[0], ivs[2]},
rhs_indices{ivs[2], ivs[1]}, result_indices{ivs[0], ivs[1]};
auto l = builder.create<AffineLoadOp>(loc, lhs, lhs_indices);
auto r = builder.create<AffineLoadOp>(loc, rhs, rhs_indices);
auto result =
rewriter.create<AffineLoadOp>(loc, op.output(), result_indices);
Value op_result = lmhlo::HloOpToStdScalarOp::map<DotOp>(
op, element_type, {l, r, result}, &builder);
map_status = success(op_result != nullptr);
if (failed(map_status)) return;
builder.create<AffineStoreOp>(loc, op_result, op.output(),
result_indices);
};
BuildBoundedAffineLoopNest(rewriter, op.getLoc(),
{shape_lhs[0], shape_rhs[1], shape_rhs[0]},
body_builder);
if (failed(map_status)) return failure();
rewriter.eraseOp(op);
return success();
}
};
/// Concat Operation Example (2D):
/// Given inpA[2][1], inpB[2][2], concat_dimension = 1.
/// Compute output[x1][x2].
/// Implementation Pseudocode:
/// s = 0
/// for a in range(0, 2):
/// for b in range(0, 1):
/// output[a][b] = inpA[a][b - s]
/// s = 1
/// for a in range(0, 2):
/// for b in range(1, 3):
/// output[a][b] = inpB[a][b - s]
///
/// Concatenate composes an array from multiple array operands. The array is of
/// the same rank as each of the input array operands (which must be of the same
/// rank as each other) and contains the arguments in the order that they were
/// specified.
struct ConcatOpConverter : public OpRewritePattern<ConcatenateOp> {
using OpRewritePattern<ConcatenateOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ConcatenateOp op,
PatternRewriter& rewriter) const override {
Location loc = op.getLoc();
Value output = op.output();
MemRefType outputType = output.getType().cast<MemRefType>();
unsigned outputRank = outputType.getRank();
ArrayRef<int64_t> outputShape = outputType.getShape();
ValueRange operands = op.val();
uint64_t concatDim = op.dimension();
int64_t prevBound = 0;
for (Value operand : operands) {
MemRefType operandType = operand.getType().cast<MemRefType>();
ArrayRef<int64_t> operandShape = operandType.getShape();
// TODO(pashu123): Extend support for dynamic dimensions.
if (!operandType.hasStaticShape()) return failure();
// Only for the concatenation dimension, the value is dimension -
// prevBound.
SmallVector<AffineExpr, 4> expr;
for (unsigned i = 0; i < outputRank; i++) {
AffineExpr d0 = (i == concatDim)
? rewriter.getAffineDimExpr(concatDim) - prevBound
: rewriter.getAffineDimExpr(i);
expr.push_back(d0);
}
AffineMap map =
AffineMap::get(outputRank, 0, expr, rewriter.getContext());
// Create multiple for loop nests iterating along the concatenation
// dimension.
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<Value, 3> indices;
AffineForOp forOp;
for (unsigned i = 0; i < outputRank; i++) {
if (i == concatDim) {
forOp = rewriter.create<AffineForOp>(loc, prevBound,
prevBound + operandShape[i]);
prevBound += operandShape[i];
indices.push_back(forOp.getInductionVar());
} else {
forOp = rewriter.create<AffineForOp>(loc, 0, outputShape[i]);
indices.push_back(forOp.getInductionVar());
}
rewriter.setInsertionPointToStart(forOp.getBody());
}
Value storeVal =
rewriter.create<AffineLoadOp>(loc, operand, map, indices);
rewriter.create<AffineStoreOp>(loc, storeVal, output, indices);
}
rewriter.eraseOp(op);
return success();
}
};
template <typename LhloOpTy>
struct BinaryOpConverter : public OpRewritePattern<LhloOpTy> {
using OpRewritePattern<LhloOpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(LhloOpTy op,
PatternRewriter& rewriter) const override {
const auto& lhs = op.lhs();
const auto& rhs = op.rhs();
const auto& lhs_type = lhs.getType().template cast<MemRefType>();
const auto& rhs_type = rhs.getType().template cast<MemRefType>();
const auto& element_type = lhs_type.getElementType();
if (lhs_type.getShape() != rhs_type.getShape()) {
return failure();
}
LogicalResult map_status = success();
auto body_builder = [&](OpBuilder& builder, Location loc,
ValueRange induction_vars) {
auto l = builder.create<AffineLoadOp>(loc, lhs, induction_vars);
auto r = builder.create<AffineLoadOp>(loc, rhs, induction_vars);
Value op_result = lmhlo::HloOpToStdScalarOp::map<LhloOpTy>(
op, element_type, {l, r}, &builder);
map_status = success(op_result != nullptr);
if (failed(map_status)) return;
rewriter.create<AffineStoreOp>(loc, op_result, op.out(), induction_vars);
};
BuildBoundedAffineLoopNest(rewriter, op.getLoc(), lhs_type.getShape(),
body_builder);
if (failed(map_status)) return failure();
rewriter.eraseOp(op);
return success();
}
};
void populateLHLOToAffineConversionPattern(MLIRContext* context,
OwningRewritePatternList* patterns) {
// clang-format off
patterns->insert<
BinaryOpConverter<lmhlo::AddOp>,
BinaryOpConverter<lmhlo::AndOp>,
BinaryOpConverter<lmhlo::DivOp>,
BinaryOpConverter<lmhlo::MaxOp>,
BinaryOpConverter<lmhlo::MinOp>,
BinaryOpConverter<lmhlo::MulOp>,
BinaryOpConverter<lmhlo::SubOp>,
ConcatOpConverter,
DotOpConverter>(context);
// clang-format on
}
struct LhloLegalizeToAffinePass
: public LhloLegalizeToAffinePassBase<LhloLegalizeToAffinePass> {
void getDependentDialects(DialectRegistry& registry) const override {
registry.insert<AffineDialect>();
}
void runOnFunction() override {
auto func = getFunction();
OwningRewritePatternList patterns(&getContext());
populateLHLOToAffineConversionPattern(&getContext(), &patterns);
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>> createLhloLegalizeToAffinePass() {
return std::make_unique<LhloLegalizeToAffinePass>();
}
} // namespace lmhlo
} // namespace mlir