2020-07-07 04:57:00 +08:00
|
|
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License.
|
|
|
|
==============================================================================*/
|
|
|
|
|
|
|
|
// This file implements logic for lowering the tanh standard ops to an
|
|
|
|
// approximation.
|
|
|
|
|
2020-07-29 07:12:08 +08:00
|
|
|
#include "mlir-hlo/Dialect/mhlo/transforms/passes.h"
|
|
|
|
#include "mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
|
|
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
|
|
#include "mlir/IR/Function.h"
|
|
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
#include "mlir/Pass/Pass.h"
|
2020-07-07 04:57:00 +08:00
|
|
|
|
|
|
|
namespace mlir {
|
2020-07-29 07:12:08 +08:00
|
|
|
namespace mhlo {
|
2020-07-07 04:57:00 +08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// Emits the fast tanh approximation that is also used by XLA.
|
|
|
|
Value EmitTanhApproximation(Value input, Location loc,
|
|
|
|
PatternRewriter &rewriter) {
|
|
|
|
// For small values of x, we can approximate tanh(x)=x. For extremely small
|
|
|
|
// values of x (|x| < 1e-37), the other approximation would evaluate
|
|
|
|
// tanh(x) = 0.
|
|
|
|
constexpr float kCanUseApprox = 0.0004;
|
|
|
|
Value abs_value = rewriter.create<AbsFOp>(loc, input);
|
|
|
|
Value can_use_approx =
|
|
|
|
rewriter.create<ConstantOp>(loc, rewriter.getF32FloatAttr(kCanUseApprox));
|
|
|
|
Value return_input = rewriter.create<CmpFOp>(loc, CmpFPredicate::OLT,
|
|
|
|
abs_value, can_use_approx);
|
|
|
|
// Clamp the input to [-c, c].
|
|
|
|
Value max_clamp = rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(7.90531110763549805f));
|
|
|
|
Value smaller_than_max =
|
|
|
|
rewriter.create<CmpFOp>(loc, CmpFPredicate::ULE, input, max_clamp);
|
|
|
|
Value clamped_half =
|
|
|
|
rewriter.create<SelectOp>(loc, smaller_than_max, input, max_clamp);
|
|
|
|
Value min_clamp = rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(-7.90531110763549805f));
|
|
|
|
Value larger_than_min =
|
|
|
|
rewriter.create<CmpFOp>(loc, CmpFPredicate::UGE, clamped_half, min_clamp);
|
|
|
|
Value input_clamped =
|
|
|
|
rewriter.create<SelectOp>(loc, larger_than_min, clamped_half, min_clamp);
|
|
|
|
|
|
|
|
static constexpr std::array<float, 7> numerator_coeffs{
|
|
|
|
-2.76076847742355e-16f, 2.00018790482477e-13f, -8.60467152213735e-11f,
|
|
|
|
5.12229709037114e-08f, 1.48572235717979e-05f, 6.37261928875436e-04f,
|
|
|
|
4.89352455891786e-03f};
|
|
|
|
|
|
|
|
static constexpr std::array<float, 4> denominator_coeffs{
|
|
|
|
1.19825839466702e-06f, 1.18534705686654e-04f, 2.26843463243900e-03f,
|
|
|
|
4.89352518554385e-03f};
|
|
|
|
|
|
|
|
Value input_squared =
|
|
|
|
rewriter.create<MulFOp>(loc, input_clamped, input_clamped);
|
|
|
|
Value numerator = rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(numerator_coeffs[0]));
|
|
|
|
for (int i = 1; i < numerator_coeffs.size(); i++) {
|
|
|
|
numerator = rewriter.create<AddFOp>(
|
|
|
|
loc, rewriter.create<MulFOp>(loc, input_squared, numerator),
|
|
|
|
rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(numerator_coeffs[i])));
|
|
|
|
}
|
|
|
|
|
|
|
|
numerator = rewriter.create<MulFOp>(loc, input_clamped, numerator);
|
|
|
|
|
|
|
|
Value denominator = rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(denominator_coeffs[0]));
|
|
|
|
for (int i = 1; i < denominator_coeffs.size(); i++) {
|
|
|
|
denominator = rewriter.create<AddFOp>(
|
|
|
|
loc, rewriter.create<MulFOp>(loc, input_squared, denominator),
|
|
|
|
rewriter.create<ConstantOp>(
|
|
|
|
loc, rewriter.getF32FloatAttr(denominator_coeffs[i])));
|
|
|
|
}
|
|
|
|
|
|
|
|
Value approx = rewriter.create<DivFOp>(loc, numerator, denominator);
|
|
|
|
|
|
|
|
return rewriter.create<SelectOp>(loc, return_input, input, approx);
|
|
|
|
}
|
|
|
|
|
|
|
|
class ApproximateTanhLowering : public OpRewritePattern<TanhOp> {
|
|
|
|
public:
|
|
|
|
explicit ApproximateTanhLowering(MLIRContext *ctx)
|
|
|
|
: OpRewritePattern<TanhOp>(ctx, 100) {}
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(TanhOp tanhOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Type operand_type = tanhOp.getType();
|
|
|
|
|
|
|
|
if (operand_type.isF64()) {
|
|
|
|
// Similar to XLA, do not rewrite f64 as precision might matter.
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
|
|
|
|
Location loc = tanhOp.getLoc();
|
|
|
|
Value input = tanhOp.operand();
|
|
|
|
if (operand_type.isF16()) {
|
|
|
|
input = rewriter.create<FPExtOp>(loc, input, rewriter.getF32Type());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we still do not have f32, fail.
|
|
|
|
if (!input.getType().isF32()) {
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
|
|
|
|
Value result = EmitTanhApproximation(input, loc, rewriter);
|
|
|
|
|
|
|
|
// Truncate back if needed.
|
|
|
|
if (operand_type.isF16()) {
|
|
|
|
result = rewriter.create<FPTruncOp>(loc, result, rewriter.getF16Type());
|
|
|
|
}
|
|
|
|
|
|
|
|
rewriter.replaceOp(tanhOp, {result});
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-09-24 02:53:08 +08:00
|
|
|
struct LegalizeTrigonometricToApproximationPass
|
|
|
|
: public PassWrapper<LegalizeTrigonometricToApproximationPass,
|
|
|
|
FunctionPass> {
|
2020-07-07 04:57:00 +08:00
|
|
|
/// Perform the lowering of standard dialect operations to approximations.
|
|
|
|
void runOnFunction() override {
|
|
|
|
OwningRewritePatternList patterns;
|
2020-09-24 02:53:08 +08:00
|
|
|
PopulateTrigonometricToApproximationPatterns(&getContext(), &patterns);
|
2020-07-07 04:57:00 +08:00
|
|
|
applyPatternsAndFoldGreedily(getFunction(), patterns);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
|
|
std::unique_ptr<mlir::OperationPass<mlir::FuncOp>>
|
2020-09-24 02:53:08 +08:00
|
|
|
createLegalizeTrigonometricToApproximationPass() {
|
|
|
|
return std::make_unique<LegalizeTrigonometricToApproximationPass>();
|
2020-07-07 04:57:00 +08:00
|
|
|
}
|
|
|
|
|
2020-09-24 02:53:08 +08:00
|
|
|
void PopulateTrigonometricToApproximationPatterns(
|
|
|
|
mlir::MLIRContext *context, OwningRewritePatternList *patterns) {
|
2020-07-07 04:57:00 +08:00
|
|
|
patterns->insert<ApproximateTanhLowering>(context);
|
|
|
|
}
|
|
|
|
|
2020-07-29 07:12:08 +08:00
|
|
|
} // namespace mhlo
|
2020-07-07 04:57:00 +08:00
|
|
|
} // namespace mlir
|