mlir-hlo/lib/Dialect/mhlo/transforms/rank_specialization.cc

289 lines
11 KiB
C++
Raw Normal View History

/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "mlir-hlo/Dialect/mhlo/IR/chlo_ops.h"
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
#include "mlir-hlo/Dialect/mhlo/transforms/passes.h"
#include "mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
/// Needed to build `llvm::SmallSet`s of `mlir::Value`s.
static bool operator<(const Value &lhs, const Value &rhs) {
return lhs.getAsOpaquePointer() < rhs.getAsOpaquePointer();
}
namespace mhlo {
namespace {
/// Identify clusters of operations that can be rank-specialized together. The
/// required traits for clustered operations are:
/// - Element-wise: All operations in the group must be element-wise. This
/// allows to reshape operands before applying the operations as well as
/// reshaping the result to the desired shape afterwards. This way, we can,
/// e.g., apply unary ops to a completely flattened operand and restore the
/// original shape afterwards.
/// - Broadcasting semantics: All operations must implement broadcasting
/// semantics. Most importantly, this allows extending operand shapes such
/// that they match in rank. Operations that require all their operands to
/// be of the same shape also fulfill this requirement.
/// - Shape reification: All operations must implement
/// `InferShapedTypeOpInterface`. This is later needed to compute and to
/// restore the desired result shape.
bool IsClusterable(Operation *op) {
if (!llvm::isa<InferShapedTypeOpInterface>(op)) return false;
if (op->getNumOperands() == 0) return false;
return (op->hasTrait<OpTrait::Elementwise>() &&
op->hasTrait<OpTrait::SameOperandsAndResultShape>()) ||
(op->hasTrait<chlo::OpTrait::BroadcastingElementwise>() &&
op->hasTrait<chlo::OpTrait::Broadcasting>());
}
struct RankSpecializationClusterPattern : public RewritePattern {
explicit RankSpecializationClusterPattern(MLIRContext *ctx)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Only apply to operations that have not been clustered yet.
if (op->getParentOfType<chlo::RankSpecializationClusterOp>()) {
return failure();
}
// Only cluster when rank specialization is needed.
if (!IsClusterable(op) || !llvm::any_of(op->getOperandTypes(), [](Type ty) {
return ty.isa<UnrankedTensorType>();
})) {
return failure();
}
// Collect all collectively rank specializable ops.
SmallVector<Operation *, 16> cluster;
llvm::SmallSet<Value, 16> operand_set;
llvm::SmallSet<Value, 16> result_set;
Operation *root_op = op;
while (root_op->getNextNode() != nullptr &&
IsClusterable(root_op->getNextNode()))
root_op = root_op->getNextNode();
Operation *it = root_op;
while (it != nullptr && IsClusterable(it)) {
// Find results that escape the cluster.
for (OpOperand &use : it->getUses()) {
if (!llvm::is_contained(cluster, use.getOwner()))
result_set.insert(use.get());
}
// Update cluster operands.
for (OpResult v : it->getResults()) operand_set.erase(Value(v));
for (OpOperand &v : it->getOpOperands()) operand_set.insert(v.get());
cluster.push_back(it);
it = it->getPrevNode();
}
// Create `RankSpecializationClusterOp`.
auto operands = llvm::to_vector<16>(operand_set);
auto results = llvm::to_vector<16>(result_set);
auto result_types = llvm::to_vector<16>(
llvm::map_range(result_set, [](Value v) { return v.getType(); }));
Location loc = op->getLoc();
auto cluster_op = rewriter.create<chlo::RankSpecializationClusterOp>(
loc, result_types, operands);
// Create body block.
auto operand_types = llvm::to_vector<16>(
llvm::map_range(operand_set, [](Value v) { return v.getType(); }));
Block *block = rewriter.createBlock(&cluster_op.body(), {}, operand_types);
// Copy operations into the body.
BlockAndValueMapping bvm;
for (auto it : llvm::zip(operands, block->getArguments()))
bvm.map(std::get<0>(it), std::get<1>(it));
rewriter.setInsertionPointToStart(block);
for (Operation *it : llvm::reverse(cluster)) rewriter.clone(*it, bvm);
// Create `RankSpecializationClusterYieldOp`.
auto mapped_results = llvm::to_vector<16>(
llvm::map_range(results, [&](Value v) { return bvm.lookup(v); }));
rewriter.create<chlo::RankSpecializationClusterYieldOp>(loc,
mapped_results);
// Replace original ops with the new results.
for (auto it : llvm::zip(results, cluster_op.results()))
bvm.map(std::get<0>(it), std::get<1>(it));
for (Operation *it : cluster) {
if (it->getUses().empty()) {
rewriter.eraseOp(it);
continue;
}
auto replacements = llvm::to_vector<16>(llvm::map_range(
it->getResults(), [&](Value v) { return bvm.lookup(v); }));
rewriter.replaceOp(it, replacements);
}
return success();
}
};
struct RankSpecializationClusterPass
: public PassWrapper<RankSpecializationClusterPass, FunctionPass> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<mhlo::MhloDialect, chlo::HloClientDialect>();
}
void runOnFunction() override {
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
mhlo::PopulateRankSpecializationClusterPatterns(ctx, &patterns);
if (failed(
applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)))) {
return signalPassFailure();
}
}
};
/// Lower rank specialization cluster to SCF.
Type DeriveRankedTensorTypes(Type ty, int64_t rank) {
auto unranked_ty = ty.dyn_cast<UnrankedTensorType>();
if (!unranked_ty) return ty;
SmallVector<int64_t, 8> shape(rank, ShapedType::kDynamicSize);
return RankedTensorType::get(shape, unranked_ty.getElementType());
}
/// Unary element-wise operations on unranked tensors can be applied to the
/// flattened tensor and reshaped to the expected shape afterwards.
struct LowerUnaryRankSpecializationClusterPattern
: public OpRewritePattern<chlo::RankSpecializationClusterOp> {
using OpRewritePattern<chlo::RankSpecializationClusterOp>::OpRewritePattern;
LogicalResult matchAndRewrite(chlo::RankSpecializationClusterOp op,
PatternRewriter &rewriter) const override {
// Only apply this to unary operations.
if (op.operands().size() != 1) return failure();
// Compute flattened operand shape.
Location loc = op.getLoc();
Value arg = op.operands().front();
Value shape = rewriter.create<shape::ShapeOfOp>(loc, arg);
Value flat_shape = rewriter.create<tensor::FromElementsOp>(
loc,
rewriter
.create<shape::NumElementsOp>(loc, rewriter.getIndexType(), shape)
.result());
// Flatten operand.
Value flat_arg = rewriter.create<mhlo::DynamicReshapeOp>(
loc, DeriveRankedTensorTypes(arg.getType(), /*rank=*/1), arg,
flat_shape);
// Materialize ranked versions of the element-wise operations.
BlockAndValueMapping bvm;
bvm.map(op.getBody()->getArguments().front(), flat_arg);
for (Operation &nested_op : op.getBody()->without_terminator()) {
auto mapped_operands = llvm::to_vector<4>(llvm::map_range(
nested_op.getOperands(), [&](Value v) { return bvm.lookup(v); }));
auto ranked_result_types = llvm::to_vector<2>(llvm::map_range(
nested_op.getResultTypes(),
[](Type ty) { return DeriveRankedTensorTypes(ty, /*rank=*/1); }));
OperationState ranked_op_state(loc, nested_op.getName().getStringRef(),
mapped_operands, ranked_result_types,
nested_op.getAttrs());
Operation *ranked_op = rewriter.createOperation(ranked_op_state);
for (auto it :
llvm::zip(nested_op.getResults(), ranked_op->getResults())) {
bvm.map(std::get<0>(it), std::get<1>(it));
}
}
// Collect results and restore their shape. We don't have to reify a shape
// computation in the unary case as the operand shapes to all the
// element-wise ops can only be the unique input shape.
SmallVector<Value> results;
for (Value v : llvm::cast<chlo::RankSpecializationClusterYieldOp>(
op.getBody()->getTerminator())
.results()) {
Value flat_result = bvm.lookup(v);
Value result = rewriter.create<mhlo::DynamicReshapeOp>(
loc, v.getType(), flat_result, shape);
results.push_back(result);
}
// Replace the rank specialization cluster.
rewriter.replaceOp(op, results);
return success();
}
};
struct RankSpecializationToSCFPass
: public PassWrapper<RankSpecializationToSCFPass, FunctionPass> {
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<mhlo::MhloDialect, chlo::HloClientDialect,
shape::ShapeDialect>();
}
void runOnFunction() override {
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
PopulateRankSpecializationToSCFPatterns(ctx, &patterns);
if (failed(
applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
void PopulateRankSpecializationClusterPatterns(
MLIRContext *context, OwningRewritePatternList *patterns) {
patterns->insert<RankSpecializationClusterPattern>(context);
}
void PopulateRankSpecializationToSCFPatterns(
MLIRContext *context, OwningRewritePatternList *patterns) {
patterns->insert<LowerUnaryRankSpecializationClusterPattern>(context);
}
std::unique_ptr<FunctionPass> createRankSpecializationClusterPass() {
return std::make_unique<RankSpecializationClusterPass>();
}
std::unique_ptr<FunctionPass> createRankSpecializationToSCFPass() {
return std::make_unique<RankSpecializationToSCFPass>();
}
} // namespace mhlo
} // namespace mlir