2020-07-07 04:57:00 +08:00
|
|
|
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License.
|
|
|
|
==============================================================================*/
|
|
|
|
|
2020-07-22 20:25:26 +08:00
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/Dialect/SCF/SCF.h"
|
2020-07-07 04:57:00 +08:00
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/Dialect/Shape/IR/Shape.h"
|
2020-07-22 20:25:26 +08:00
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h"
|
2020-07-07 04:57:00 +08:00
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Attributes.h"
|
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/MLIRContext.h"
|
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/OperationSupport.h"
|
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/PatternMatch.h"
|
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/IR/StandardTypes.h"
|
|
|
|
#include "third_party/llvm/llvm-project/mlir/include/mlir/Transforms/DialectConversion.h"
|
|
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/chlo_ops.h"
|
|
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
|
2020-07-22 20:25:26 +08:00
|
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
|
2020-07-07 04:57:00 +08:00
|
|
|
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/utils/broadcast_utils.h"
|
|
|
|
|
|
|
|
namespace mlir {
|
2020-07-09 01:12:48 +08:00
|
|
|
namespace chlo {
|
2020-07-07 04:57:00 +08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Converts binary ops that statically are determined to not broadcast directly
|
2020-07-07 12:51:24 +08:00
|
|
|
// to the corresponding mhlo non-broadcasting op.
|
2020-07-07 04:57:00 +08:00
|
|
|
template <typename ChloOpTy, typename HloOpTy, typename Adaptor>
|
|
|
|
struct ConvertTrivialNonBroadcastBinaryOp : public OpRewritePattern<ChloOpTy> {
|
|
|
|
using OpRewritePattern<ChloOpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ChloOpTy op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Only rewrite for statically determinable non-broadcasting cases.
|
|
|
|
auto lhs_type = op.lhs().getType().template dyn_cast<RankedTensorType>();
|
|
|
|
auto rhs_type = op.rhs().getType().template dyn_cast<RankedTensorType>();
|
|
|
|
if (!lhs_type || !rhs_type) return failure();
|
|
|
|
|
|
|
|
// Requires rank broadcast.
|
|
|
|
if (lhs_type.getRank() != rhs_type.getRank()) return failure();
|
|
|
|
// Any dynamic dimension may require broadcasting and requires more
|
|
|
|
// analysis.
|
|
|
|
if (!lhs_type.hasStaticShape() || !rhs_type.hasStaticShape())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
for (auto extents : llvm::zip(lhs_type.getShape(), rhs_type.getShape())) {
|
|
|
|
auto lhs_extent = std::get<0>(extents);
|
|
|
|
auto rhs_extent = std::get<1>(extents);
|
|
|
|
if (lhs_extent != rhs_extent) {
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rewriter.replaceOp(op, {Adaptor::CreateOp(op, op.getResult().getType(),
|
|
|
|
op.lhs(), op.rhs(), rewriter)});
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Converts a binary op with ranked broadcasting operands to explicitly
|
2020-07-07 12:51:24 +08:00
|
|
|
// broadcast and invoke the corresponding mhlo non-broadcasting op.
|
2020-07-07 04:57:00 +08:00
|
|
|
// Note that dynamic broadcasting supported by this pattern is only valid for
|
|
|
|
// "numpy" broadcasting semantics as defined here:
|
|
|
|
// https://docs.scipy.org/doc/numpy/reference/ufuncs.html
|
|
|
|
// Specifically, this includes the following cases:
|
|
|
|
// - Same rank broadcast (operands have the same static rank).
|
|
|
|
// - Different-rank broadcast, either without a broadcast_dims attribte or
|
|
|
|
// with the broadcast_dims attribute set to map to a prefix padding.
|
|
|
|
// - Legal combinations of degenerate (1-dim) implicit broadcasting.
|
|
|
|
// The restriction on broadcast_dims derives from the definition of the
|
|
|
|
// `shape.broadcast` op, which only supports prefix-padding.
|
|
|
|
template <typename ChloOpTy, typename HloOpTy, typename Adaptor>
|
|
|
|
struct ConvertRankedDynamicBroadcastBinaryOp
|
|
|
|
: public OpRewritePattern<ChloOpTy> {
|
|
|
|
using OpRewritePattern<ChloOpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ChloOpTy op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Only support ranked operands.
|
|
|
|
Value lhs = op.lhs();
|
|
|
|
Value rhs = op.rhs();
|
|
|
|
auto lhs_type = lhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto rhs_type = rhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto result_type =
|
|
|
|
op.getResult().getType().template dyn_cast<RankedTensorType>();
|
|
|
|
if (!lhs_type || !rhs_type || !result_type) return failure();
|
|
|
|
|
|
|
|
// Check for "numpy"-style rank broadcast.
|
|
|
|
auto broadcast_dimensions = op.broadcast_dimensions();
|
|
|
|
if (broadcast_dimensions &&
|
2020-07-09 11:32:16 +08:00
|
|
|
!hlo::IsLegalNumpyRankedBroadcast(lhs, rhs, *broadcast_dimensions)) {
|
2020-07-07 04:57:00 +08:00
|
|
|
// Note: It is unclear whether the general specification of explicit
|
|
|
|
// broadcast_dimensions on binary ops is a feature we want to carry
|
|
|
|
// forward. While it can technically be implemented for ranked-dynamic,
|
|
|
|
// it is incompatible with unranked inputs. If this warning is emitted
|
|
|
|
// in real programs, it is an indication that the feature should be
|
|
|
|
// implemented versus just falling back on the more standard definition
|
|
|
|
// of numpy-like prefix-padding.
|
|
|
|
op.emitWarning() << "unsupported non prefix-padded dynamic rank "
|
|
|
|
<< "broadcast_dimensions = " << *broadcast_dimensions;
|
|
|
|
return failure();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute result shape.
|
|
|
|
auto loc = op.getLoc();
|
|
|
|
|
|
|
|
// Insert a constraint on the shapes being broadcastable and insert all
|
|
|
|
// future code into an assuming block reliant on the constraint.
|
|
|
|
Value lhs_shape = rewriter.create<shape::ShapeOfOp>(loc, lhs);
|
|
|
|
Value rhs_shape = rewriter.create<shape::ShapeOfOp>(loc, rhs);
|
|
|
|
auto broadcastable_cstr =
|
|
|
|
rewriter.create<shape::CstrBroadcastableOp>(loc, lhs_shape, rhs_shape);
|
|
|
|
auto assuming_op = rewriter.create<shape::AssumingOp>(
|
|
|
|
loc, ArrayRef<Type>{result_type}, broadcastable_cstr.result());
|
|
|
|
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
|
|
rewriter.createBlock(&assuming_op.doRegion());
|
|
|
|
|
|
|
|
int64_t result_rank = std::max(lhs_type.getRank(), rhs_type.getRank());
|
|
|
|
Value result_extents =
|
2020-07-09 11:32:16 +08:00
|
|
|
hlo::ComputeBinaryElementwiseBroadcastingResultExtents(loc, lhs, rhs,
|
2020-07-07 04:57:00 +08:00
|
|
|
rewriter);
|
|
|
|
|
|
|
|
// Note that we unconditionally emit DynamicBroadcastInDim ops and let
|
|
|
|
// downstream canonicalizations fold them away if possible. This is
|
|
|
|
// because, in the dynamic case, there are many corner cases regarding
|
|
|
|
// when it is safe to omit, and some of them require analysis to prove
|
|
|
|
// properly.
|
|
|
|
auto lhs_broadcast_dimensions = llvm::to_vector<4>(
|
|
|
|
llvm::seq<int64_t>(result_rank - lhs_type.getRank(), result_rank));
|
2020-07-07 12:51:24 +08:00
|
|
|
Value broadcasted_lhs = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
|
2020-07-07 04:57:00 +08:00
|
|
|
loc,
|
|
|
|
RankedTensorType::get(result_type.getShape(),
|
|
|
|
lhs_type.getElementType()),
|
|
|
|
lhs, result_extents,
|
|
|
|
rewriter.getI64TensorAttr(lhs_broadcast_dimensions));
|
|
|
|
auto rhs_broadcast_dimensions = llvm::to_vector<4>(
|
|
|
|
llvm::seq<int64_t>(result_rank - rhs_type.getRank(), result_rank));
|
2020-07-07 12:51:24 +08:00
|
|
|
Value broadcasted_rhs = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
|
2020-07-07 04:57:00 +08:00
|
|
|
loc,
|
|
|
|
RankedTensorType::get(result_type.getShape(),
|
|
|
|
rhs_type.getElementType()),
|
|
|
|
rhs, result_extents,
|
|
|
|
rewriter.getI64TensorAttr(rhs_broadcast_dimensions));
|
|
|
|
|
|
|
|
// And generate the final non-broadcasted binary op.
|
|
|
|
Value final_result = Adaptor::CreateOp(op, result_type, broadcasted_lhs,
|
|
|
|
broadcasted_rhs, rewriter);
|
|
|
|
rewriter.create<shape::AssumingYieldOp>(loc, final_result);
|
|
|
|
rewriter.replaceOp(op, {assuming_op.getResult(0)});
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-07-22 20:25:26 +08:00
|
|
|
// Converts a broadcasting binary operation with a scalar operand and an
|
|
|
|
// unranked operand to a ranked broadcasting operation by dynamically reshaping
|
|
|
|
// the unranked operand to a 1D tensor. This will always be safe because
|
|
|
|
// broadcasting from a scalar to another shape always works.
|
|
|
|
template <typename ChloOpTy, typename HloOpTy>
|
|
|
|
struct ConvertUnrankedScalarDynamicBroadcastBinaryOp
|
|
|
|
: public OpRewritePattern<ChloOpTy> {
|
|
|
|
using OpRewritePattern<ChloOpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(ChloOpTy op,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto loc = op.getLoc();
|
|
|
|
Value lhs = op.lhs();
|
|
|
|
Value rhs = op.rhs();
|
|
|
|
|
|
|
|
auto lhs_ranked_type = lhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto lhs_unranked_type = lhs.getType().dyn_cast<UnrankedTensorType>();
|
|
|
|
|
|
|
|
auto rhs_ranked_type = rhs.getType().dyn_cast<RankedTensorType>();
|
|
|
|
auto rhs_unranked_type = rhs.getType().dyn_cast<UnrankedTensorType>();
|
|
|
|
|
|
|
|
bool lhs_is_scalar = lhs_ranked_type &&
|
|
|
|
lhs_ranked_type.getShape().empty() &&
|
|
|
|
rhs_unranked_type;
|
|
|
|
bool rhs_is_scalar = rhs_ranked_type &&
|
|
|
|
rhs_ranked_type.getShape().empty() &&
|
|
|
|
lhs_unranked_type;
|
|
|
|
|
|
|
|
// Only support the case where exactly one operand is scalar and the other
|
|
|
|
// is unranked. Other patterns in this file will create more efficient
|
|
|
|
// lowerings for cases where both ranks are known or will handle the more
|
|
|
|
// generic case of both inputs being unranked.
|
|
|
|
if (!(lhs_is_scalar ^ rhs_is_scalar)) return failure();
|
|
|
|
|
|
|
|
auto result_type = op.getResult().getType().template dyn_cast<TensorType>();
|
|
|
|
|
|
|
|
// Reshape the non-scalar value into a dynamically sized, rank-1 tensor
|
|
|
|
Value shape =
|
|
|
|
rewriter.create<shape::ShapeOfOp>(loc, lhs_is_scalar ? rhs : lhs);
|
|
|
|
Value num_elements = rewriter.create<shape::NumElementsOp>(loc, shape);
|
|
|
|
Value size = rewriter.create<shape::SizeToIndexOp>(loc, num_elements);
|
|
|
|
Value size_tensor = rewriter.create<TensorFromElementsOp>(loc, size);
|
|
|
|
Value reshaped = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
|
|
loc, RankedTensorType::get({-1}, result_type.getElementType()),
|
|
|
|
lhs_is_scalar ? rhs : lhs, size_tensor);
|
|
|
|
|
|
|
|
// Create a new ranked Chlo op that will be further lowered by other
|
|
|
|
// patterns into Mhlo.
|
|
|
|
SmallVector<Value, 2> operands{lhs_is_scalar ? lhs : reshaped,
|
|
|
|
rhs_is_scalar ? rhs : reshaped};
|
|
|
|
Value computed = rewriter.create<ChloOpTy>(
|
|
|
|
loc, SmallVector<Type, 1>{reshaped.getType()}, operands, op.getAttrs());
|
|
|
|
|
|
|
|
// Reshape the result back into an unranked tensor.
|
|
|
|
Value shape_tensor = rewriter.create<shape::ToExtentTensorOp>(
|
|
|
|
loc, RankedTensorType::get({-1}, rewriter.getIndexType()), shape);
|
|
|
|
rewriter.replaceOpWithNewOp<mhlo::DynamicReshapeOp>(op, result_type,
|
|
|
|
computed, shape_tensor);
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2020-07-07 04:57:00 +08:00
|
|
|
template <typename ChloOpTy, typename HloOpTy, typename Adaptor>
|
|
|
|
void PopulateForBinaryOp(MLIRContext *context,
|
|
|
|
OwningRewritePatternList *patterns) {
|
|
|
|
patterns
|
|
|
|
->insert<ConvertTrivialNonBroadcastBinaryOp<ChloOpTy, HloOpTy, Adaptor>>(
|
|
|
|
context, 10);
|
|
|
|
patterns->insert<
|
|
|
|
ConvertRankedDynamicBroadcastBinaryOp<ChloOpTy, HloOpTy, Adaptor>>(
|
|
|
|
context, 5);
|
2020-07-22 20:25:26 +08:00
|
|
|
patterns->insert<
|
|
|
|
ConvertUnrankedScalarDynamicBroadcastBinaryOp<ChloOpTy, HloOpTy>>(
|
|
|
|
context);
|
2020-07-07 04:57:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename FromOpTy, typename ToOpTy>
|
|
|
|
struct HloBinaryElementwiseAdaptor {
|
|
|
|
static ToOpTy CreateOp(FromOpTy from_op, Type result_type,
|
|
|
|
Value broadcasted_lhs, Value broadcasted_rhs,
|
|
|
|
OpBuilder &builder) {
|
|
|
|
return builder.create<ToOpTy>(from_op.getLoc(), result_type,
|
|
|
|
broadcasted_lhs, broadcasted_rhs);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct HloComplexAdaptor {
|
2020-07-07 12:51:24 +08:00
|
|
|
static mhlo::ComplexOp CreateOp(BroadcastComplexOp from_op, Type result_type,
|
|
|
|
Value broadcasted_lhs, Value broadcasted_rhs,
|
|
|
|
OpBuilder &builder) {
|
|
|
|
return builder.create<mhlo::ComplexOp>(from_op.getLoc(), result_type,
|
|
|
|
broadcasted_lhs, broadcasted_rhs);
|
2020-07-07 04:57:00 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
struct HloCompareAdaptor {
|
2020-07-07 12:51:24 +08:00
|
|
|
static mhlo::CompareOp CreateOp(BroadcastCompareOp from_op, Type result_type,
|
|
|
|
Value broadcasted_lhs, Value broadcasted_rhs,
|
|
|
|
OpBuilder &builder) {
|
|
|
|
return builder.create<mhlo::CompareOp>(from_op.getLoc(), result_type,
|
|
|
|
broadcasted_lhs, broadcasted_rhs,
|
|
|
|
from_op.comparison_direction());
|
2020-07-07 04:57:00 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
void PopulateLegalizeChloToHloPatterns(MLIRContext *context,
|
|
|
|
OwningRewritePatternList *patterns) {
|
|
|
|
// Instantiate conversion templates for conforming binary elementwise ops
|
|
|
|
// that do not have different dtypes between operands and results and do
|
|
|
|
// not have special attributes that need to be preserved.
|
|
|
|
#define POPULATE_BCAST(ChloOp, HloOp) \
|
|
|
|
PopulateForBinaryOp<ChloOp, HloOp, \
|
|
|
|
HloBinaryElementwiseAdaptor<ChloOp, HloOp>>(context, \
|
|
|
|
patterns);
|
|
|
|
|
2020-07-07 12:51:24 +08:00
|
|
|
POPULATE_BCAST(BroadcastAddOp, mhlo::AddOp);
|
|
|
|
POPULATE_BCAST(BroadcastAndOp, mhlo::AndOp);
|
|
|
|
POPULATE_BCAST(BroadcastAtan2Op, mhlo::Atan2Op);
|
|
|
|
POPULATE_BCAST(BroadcastDivOp, mhlo::DivOp);
|
|
|
|
POPULATE_BCAST(BroadcastMaxOp, mhlo::MaxOp);
|
|
|
|
POPULATE_BCAST(BroadcastMinOp, mhlo::MinOp);
|
|
|
|
POPULATE_BCAST(BroadcastMulOp, mhlo::MulOp);
|
|
|
|
POPULATE_BCAST(BroadcastOrOp, mhlo::OrOp);
|
|
|
|
POPULATE_BCAST(BroadcastPowOp, mhlo::PowOp);
|
|
|
|
POPULATE_BCAST(BroadcastRemOp, mhlo::RemOp);
|
|
|
|
POPULATE_BCAST(BroadcastShiftLeftOp, mhlo::ShiftLeftOp);
|
|
|
|
POPULATE_BCAST(BroadcastShiftRightArithmeticOp, mhlo::ShiftRightArithmeticOp);
|
|
|
|
POPULATE_BCAST(BroadcastShiftRightLogicalOp, mhlo::ShiftRightLogicalOp);
|
|
|
|
POPULATE_BCAST(BroadcastSubOp, mhlo::SubOp);
|
|
|
|
POPULATE_BCAST(BroadcastXorOp, mhlo::XorOp);
|
2020-07-07 04:57:00 +08:00
|
|
|
|
|
|
|
// Broadcasting ops requiring special construction.
|
2020-07-07 12:51:24 +08:00
|
|
|
PopulateForBinaryOp<BroadcastComplexOp, mhlo::ComplexOp, HloComplexAdaptor>(
|
|
|
|
context, patterns);
|
|
|
|
PopulateForBinaryOp<BroadcastCompareOp, mhlo::CompareOp, HloCompareAdaptor>(
|
|
|
|
context, patterns);
|
2020-07-07 04:57:00 +08:00
|
|
|
}
|
|
|
|
|
2020-07-09 01:12:48 +08:00
|
|
|
} // namespace chlo
|
2020-07-07 04:57:00 +08:00
|
|
|
} // namespace mlir
|