[XLA:GPU] Add AllReduce{Start,Done} to MLIR LHLO dialect.
PiperOrigin-RevId: 378681070
This commit is contained in:
parent
968226b9d7
commit
14093b7906
2
BUILD
2
BUILD
|
@ -546,7 +546,6 @@ cc_library(
|
|||
hdrs = [
|
||||
"include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h",
|
||||
"include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops_structs.h",
|
||||
"include/mlir-hlo/utils/lhlo_utils.h",
|
||||
],
|
||||
includes = ["include"],
|
||||
deps = [
|
||||
|
@ -591,7 +590,6 @@ cc_library(
|
|||
":hlo_ops_base_structs",
|
||||
":hlo_ops_common",
|
||||
":infer_fusibility_op_interface",
|
||||
":lhlo",
|
||||
":lhlo_gpu_ops_enums",
|
||||
":lhlo_gpu_ops_inc_gen",
|
||||
":lhlo_gpu_ops_structs",
|
||||
|
|
|
@ -230,31 +230,4 @@ def LHLOGPU_CholeskyOp : LHLOGPU_Op<"cholesky"> {
|
|||
BoolAttr:$is_lower);
|
||||
}
|
||||
|
||||
def LHLOGPU_AllReduceStartOp :
|
||||
LHLOGPU_Op<"all_reduce_start", [SameOperandsElementType, SameVariadicOperandSize]> {
|
||||
let summary = "AllReduceStart operator";
|
||||
let description = [{
|
||||
Performs an asynchronous custom reduction across replicas.
|
||||
}];
|
||||
let arguments = (ins
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$operands,
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemWrite]>:$results,
|
||||
I64ElementsAttr:$replica_groups,
|
||||
DefaultValuedAttr<BoolAttr, "false">:$constrain_layout,
|
||||
OptionalAttr<ChannelHandle>:$channel_id,
|
||||
DefaultValuedAttr<BoolAttr, "false">:$use_global_device_ids
|
||||
);
|
||||
let regions = (region SizedRegion<1>:$computation);
|
||||
let verifier = [{ return Verify(*this); }];
|
||||
}
|
||||
|
||||
def LHLOGPU_AllReduceDoneOp:
|
||||
LHLOGPU_Op<"all_reduce_done", [SameVariadicOperandSize]> {
|
||||
let summary = "AllReduceDone operator";
|
||||
let arguments = (ins
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$operands,
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemWrite]>:$results
|
||||
);
|
||||
}
|
||||
|
||||
#endif // LHLO_GPU_OPS
|
||||
|
|
|
@ -1,100 +0,0 @@
|
|||
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_LHLO_UTILS_H_
|
||||
#define TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_LHLO_UTILS_H_
|
||||
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
#include "mlir/IR/BuiltinAttributes.h"
|
||||
#include "mlir/IR/BuiltinTypes.h"
|
||||
#include "mlir/IR/Types.h"
|
||||
|
||||
namespace mlir {
|
||||
namespace lmhlo {
|
||||
|
||||
// Verifies replica groups attached to collective communication operations.
|
||||
// If the attribute is not empty, it must be a rank 2 tensor, and each replica
|
||||
// should appear exactly once. If `is_uniform_sized` is true, then we also check
|
||||
// that each group is of the same size. If the operation has
|
||||
// `use_global_device_ids` set, then replica group cannot be empty.
|
||||
template <typename OpT>
|
||||
LogicalResult VerifyReplicaGroups(OpT op, bool is_uniform_sized) {
|
||||
DenseIntElementsAttr attr = op.replica_groups();
|
||||
auto replica_group_type = attr.getType().dyn_cast<RankedTensorType>();
|
||||
if (!replica_group_type || replica_group_type.getRank() != 2 ||
|
||||
!replica_group_type.getElementType().isInteger(/*width=*/64))
|
||||
return op.emitOpError(
|
||||
"replica groups should be a rank 2 tensor of 64 bit integers");
|
||||
|
||||
if (replica_group_type.getShape().equals(ArrayRef<int64_t>{0, 0})) {
|
||||
if (op.use_global_device_ids()) {
|
||||
return op.emitOpError(
|
||||
"if `use_global_device_ids` is set, the replica groups cannot be "
|
||||
"empty");
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
int64_t max_replica_id_seen = 0;
|
||||
llvm::SmallSet<int64_t, 8> replica_seen;
|
||||
for (int64_t id : attr.getValues<int64_t>()) {
|
||||
// Replica groups are stored in a 2D tensor. If the op supports non-uniform
|
||||
// groups, null replica IDs are stored as -1.
|
||||
if (id == -1) {
|
||||
if (is_uniform_sized) {
|
||||
return op.emitOpError("Invalid replica id -1");
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!replica_seen.insert(id).second) {
|
||||
return op.emitOpError("replica id #") << id << " seen more than once";
|
||||
}
|
||||
max_replica_id_seen = std::max(max_replica_id_seen, id);
|
||||
}
|
||||
|
||||
for (int64_t id = 0; id <= max_replica_id_seen; id++) {
|
||||
if (!replica_seen.contains(id)) {
|
||||
return op.emitOpError("replica id #")
|
||||
<< id << " not seen in replica groups";
|
||||
}
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
template <typename OpT>
|
||||
static LogicalResult VerifyAllReduce(OpT op) {
|
||||
if (failed(VerifyReplicaGroups(op, /*is_uniform_sized=*/false)))
|
||||
return failure();
|
||||
|
||||
// AllReduce has variadic operands and results that have the same size.
|
||||
// Each member of the operand should have the same type as the corresponding
|
||||
// member of the result.
|
||||
for (auto it : llvm::enumerate(
|
||||
llvm::zip(op.operands().getTypes(), op.results().getTypes()))) {
|
||||
Type operandType = std::get<0>(it.value());
|
||||
Type resultType = std::get<1>(it.value());
|
||||
if (operandType != resultType)
|
||||
return op.emitOpError("requires operand #")
|
||||
<< it.index() << " (type: " << operandType << ") and result #"
|
||||
<< it.index() << " (type: " << resultType << ") to have same type";
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
} // namespace lmhlo
|
||||
} // namespace mlir
|
||||
|
||||
#endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_LHLO_UTILS_H_
|
|
@ -29,7 +29,6 @@ limitations under the License.
|
|||
#include "llvm/ADT/StringRef.h"
|
||||
#include "llvm/Support/FormatVariadic.h"
|
||||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops_common.h"
|
||||
#include "mlir-hlo/utils/lhlo_utils.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/IR/Attributes.h"
|
||||
#include "mlir/IR/Builders.h"
|
||||
|
@ -62,14 +61,6 @@ LmhloGpuDialect::LmhloGpuDialect(MLIRContext *context)
|
|||
using mlir::hlo::parseWindowAttributes;
|
||||
using mlir::hlo::printWindowAttributes;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// AllReduceStartOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static LogicalResult Verify(AllReduceStartOp op) {
|
||||
return lmhlo::VerifyAllReduce(op);
|
||||
}
|
||||
|
||||
} // namespace lmhlo_gpu
|
||||
} // namespace mlir
|
||||
|
||||
|
|
|
@ -33,7 +33,6 @@ limitations under the License.
|
|||
#include "llvm/Support/FormatVariadic.h"
|
||||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops_common.h"
|
||||
#include "mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h.inc"
|
||||
#include "mlir-hlo/utils/lhlo_utils.h"
|
||||
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||||
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||||
#include "mlir/IR/Attributes.h"
|
||||
|
@ -87,6 +86,46 @@ static LogicalResult Verify(AbsOp op) {
|
|||
// AllToAllOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// Verifies replica groups attached to collective communication operations.
|
||||
// If the attribute is not empty, it must be a rank 2 tensor, and each replica
|
||||
// should appear exactly once. If `is_uniform_sized` is true, then we also check
|
||||
// that each group is of the same size. If the operation has
|
||||
// `use_global_device_id` set, then replica group cannot be empty.
|
||||
template <typename OpT>
|
||||
LogicalResult VerifyReplicaGroups(OpT op, bool is_uniform_sized) {
|
||||
DenseIntElementsAttr attr = op.replica_groups();
|
||||
auto replica_group_type = attr.getType().dyn_cast<RankedTensorType>();
|
||||
if (!replica_group_type || replica_group_type.getRank() != 2 ||
|
||||
!replica_group_type.getElementType().isInteger(/*width=*/64))
|
||||
return op.emitOpError(
|
||||
"replica groups should be a rank 2 tensor of 64 bit integers");
|
||||
|
||||
if (replica_group_type.getShape().equals(ArrayRef<int64_t>{0, 0}))
|
||||
return success();
|
||||
|
||||
int64_t max_replica_id_seen = 0;
|
||||
llvm::SmallSet<int64_t, 8> replica_seen;
|
||||
for (int64_t id : attr.getValues<int64_t>()) {
|
||||
if (is_uniform_sized && id == -1) {
|
||||
return op.emitOpError("Invalid replica id -1");
|
||||
}
|
||||
if (id != -1) {
|
||||
if (!replica_seen.insert(id).second) {
|
||||
return op.emitOpError("replica id #") << id << " seen more than once";
|
||||
}
|
||||
max_replica_id_seen = std::max(max_replica_id_seen, id);
|
||||
}
|
||||
}
|
||||
|
||||
for (int64_t id = 0; id <= max_replica_id_seen; id++) {
|
||||
if (!replica_seen.contains(id)) {
|
||||
return op.emitOpError("replica id #")
|
||||
<< id << " not seen in replica groups";
|
||||
}
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
// TODO(jurahul): Add verification for output shape.
|
||||
static LogicalResult Verify(AllGatherOp op) {
|
||||
return VerifyReplicaGroups(op, /*is_uniform_sized=*/true);
|
||||
|
@ -101,7 +140,24 @@ static LogicalResult Verify(AllToAllOp op) {
|
|||
// AllReduceOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static LogicalResult Verify(AllReduceOp op) { return VerifyAllReduce(op); }
|
||||
static LogicalResult Verify(AllReduceOp op) {
|
||||
if (failed(VerifyReplicaGroups(op, /*is_uniform_sized=*/false)))
|
||||
return failure();
|
||||
|
||||
// AllReduce has variadic operands and results that have the same size.
|
||||
// Each member of the operand should have the same type as the corresponding
|
||||
// member of the result.
|
||||
for (auto it : llvm::enumerate(
|
||||
llvm::zip(op.operands().getTypes(), op.results().getTypes()))) {
|
||||
Type operandType = std::get<0>(it.value());
|
||||
Type resultType = std::get<1>(it.value());
|
||||
if (operandType != resultType)
|
||||
return op.emitOpError("requires operand #")
|
||||
<< it.index() << " (type: " << operandType << ") and result #"
|
||||
<< it.index() << " (type: " << resultType << ") to have same type";
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// CaseOp
|
||||
|
|
Loading…
Reference in New Issue