Insert explicit casts to model extra shape knowledge for unranked chlo transform
When transforming unranked binary operations from CHLO to HLO, we insert `shape.broadcast` operations. Due to context, we know that the result of the `shape.broadcast` operation has a static shape. Instead of modelling this in the type of the broadcast operation itself, which is illegal, we now use an explicit cast. PiperOrigin-RevId: 331989879
This commit is contained in:
parent
1880f87737
commit
2aa07b0091
|
@ -373,30 +373,37 @@ struct ConvertUnrankedDynamicBroadcastBinaryOp
|
|||
Value lhs_shape = if_builder.create<shape::ShapeOfOp>(loc, lhs);
|
||||
Value rhs_shape = if_builder.create<shape::ShapeOfOp>(loc, rhs);
|
||||
SmallVector<int64_t, 6> ranked_shape(targeted_rank, 1);
|
||||
auto extent_tensor_type =
|
||||
auto unknown_rank_extent_tensor_type = RankedTensorType::get(
|
||||
{RankedTensorType::kDynamicSize}, builder.getIndexType());
|
||||
auto known_rank_extent_tensor_type =
|
||||
RankedTensorType::get({targeted_rank}, builder.getIndexType());
|
||||
auto reshaped_type = RankedTensorType::get(
|
||||
llvm::SmallVector<int64_t, 6>(targeted_rank,
|
||||
RankedTensorType::kDynamicSize),
|
||||
lhs.getType().template dyn_cast<TensorType>().getElementType());
|
||||
Value ranked_shape_val = if_builder.create<shape::ConstShapeOp>(
|
||||
loc, extent_tensor_type,
|
||||
mlir::DenseIntElementsAttr::get(extent_tensor_type, ranked_shape));
|
||||
// TODO(tpopp): Return extent tensors when possible to signal that this is a
|
||||
// guaranteed safe broadcast by construction.
|
||||
loc, known_rank_extent_tensor_type,
|
||||
mlir::DenseIntElementsAttr::get(known_rank_extent_tensor_type,
|
||||
ranked_shape));
|
||||
Value extended_lhs = if_builder.create<shape::BroadcastOp>(
|
||||
loc, extent_tensor_type, lhs_shape, ranked_shape_val, nullptr);
|
||||
loc, unknown_rank_extent_tensor_type, lhs_shape, ranked_shape_val,
|
||||
nullptr);
|
||||
Value extended_lhs_casted = if_builder.create<TensorCastOp>(
|
||||
loc, known_rank_extent_tensor_type, extended_lhs);
|
||||
Value extended_rhs = if_builder.create<shape::BroadcastOp>(
|
||||
loc, extent_tensor_type, rhs_shape, ranked_shape_val, nullptr);
|
||||
loc, unknown_rank_extent_tensor_type, rhs_shape, ranked_shape_val,
|
||||
nullptr);
|
||||
Value extended_rhs_casted = if_builder.create<TensorCastOp>(
|
||||
loc, known_rank_extent_tensor_type, extended_rhs);
|
||||
|
||||
// 1. Reshape operands to the given rank (with the same number of elements)
|
||||
// 2. Compute the ranked-broadcasted ChloOp (which will assert that the ops
|
||||
// can be broadcasted and do the actual broadcasting)
|
||||
// 3. Type erase the output back to unranked
|
||||
Value reshaped_lhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
||||
loc, reshaped_type, lhs, extended_lhs);
|
||||
loc, reshaped_type, lhs, extended_lhs_casted);
|
||||
Value reshaped_rhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
||||
loc, reshaped_type, rhs, extended_rhs);
|
||||
loc, reshaped_type, rhs, extended_rhs_casted);
|
||||
Value result = if_builder.create<ChloOpTy>(
|
||||
loc, ArrayRef<Type>{reshaped_type},
|
||||
ArrayRef<Value>{reshaped_lhs, reshaped_rhs}, op.getAttrs());
|
||||
|
|
|
@ -353,10 +353,12 @@ func @addUnrankedUnranked(
|
|||
// Handle rank 2 specialization
|
||||
// CHECK: %[[VAL_26:.*]] = scf.if %[[GREATEST_RANK_IS_2]] -> (tensor<*xf32>) {
|
||||
// CHECK: %[[CONST_SHAPE_2:.*]] = shape.const_shape [1, 1]
|
||||
// CHECK: %[[BROADCASTED_LHS_2:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<2xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_2:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<2xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_2:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||
// CHECK: %[[BROADCASTED_LHS_2:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_LHS_2:.*]] = tensor_cast %[[BROADCASTED_LHS_2]] : tensor<?xindex> to tensor<2xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_2:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_RHS_2:.*]] = tensor_cast %[[BROADCASTED_RHS_2]] : tensor<?xindex> to tensor<2xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_2:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||
// CHECK: %[[RESULT_RANK_2:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_2]], %[[RESHAPED_RHS_2]] : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
|
||||
// CHECK: %[[RESULT_2:.*]] = tensor_cast %[[RESULT_RANK_2]] : tensor<?x?xf32> to tensor<*xf32>
|
||||
// CHECK: scf.yield %[[RESULT_2]] : tensor<*xf32>
|
||||
|
@ -366,10 +368,12 @@ func @addUnrankedUnranked(
|
|||
// Handle rank 3 specialization
|
||||
// CHECK: %[[VAL_34:.*]] = scf.if %[[GREATEST_RANK_IS_3]] -> (tensor<*xf32>) {
|
||||
// CHECK: %[[CONST_SHAPE_3:.*]] = shape.const_shape [1, 1, 1]
|
||||
// CHECK: %[[BROADCASTED_LHS_3:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<3xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_3:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<3xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_3:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||
// CHECK: %[[BROADCASTED_LHS_3:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_LHS_3:.*]] = tensor_cast %[[BROADCASTED_LHS_3]] : tensor<?xindex> to tensor<3xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_3:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_RHS_3:.*]] = tensor_cast %[[BROADCASTED_RHS_3]] : tensor<?xindex> to tensor<3xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_3:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||
// CHECK: %[[RESULT_RANK_3:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_3]], %[[RESHAPED_RHS_3]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
||||
// CHECK: %[[RESULT_3:.*]] = tensor_cast %[[RESULT_RANK_3]] : tensor<?x?x?xf32> to tensor<*xf32>
|
||||
// CHECK: scf.yield %[[RESULT_3]] : tensor<*xf32>
|
||||
|
@ -379,10 +383,12 @@ func @addUnrankedUnranked(
|
|||
// Handle rank 4 specialization
|
||||
// CHECK: %[[VAL_42:.*]] = scf.if %[[GREATEST_RANK_IS_4]] -> (tensor<*xf32>) {
|
||||
// CHECK: %[[CONST_SHAPE_4:.*]] = shape.const_shape [1, 1, 1, 1]
|
||||
// CHECK: %[[BROADCASTED_LHS_4:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<4xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_4:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<4xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_4:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||
// CHECK: %[[BROADCASTED_LHS_4:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_LHS_4:.*]] = tensor_cast %[[BROADCASTED_LHS_4]] : tensor<?xindex> to tensor<4xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_4:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_RHS_4:.*]] = tensor_cast %[[BROADCASTED_RHS_4]] : tensor<?xindex> to tensor<4xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_4:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_RANK_4:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_4]], %[[RESHAPED_RHS_4]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_4:.*]] = tensor_cast %[[RESULT_RANK_4]] : tensor<?x?x?x?xf32> to tensor<*xf32>
|
||||
// CHECK: scf.yield %[[RESULT_4]] : tensor<*xf32>
|
||||
|
@ -392,10 +398,12 @@ func @addUnrankedUnranked(
|
|||
// Handle rank 5 specialization
|
||||
// CHECK: %[[VAL_50:.*]] = scf.if %[[GREATEST_RANK_IS_5]] -> (tensor<*xf32>) {
|
||||
// CHECK: %[[CONST_SHAPE_5:.*]] = shape.const_shape [1, 1, 1, 1, 1]
|
||||
// CHECK: %[[BROADCASTED_LHS_5:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<5xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_5:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<5xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_5:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||
// CHECK: %[[BROADCASTED_LHS_5:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_LHS_5:.*]] = tensor_cast %[[BROADCASTED_LHS_5]] : tensor<?xindex> to tensor<5xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_5:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_RHS_5:.*]] = tensor_cast %[[BROADCASTED_RHS_5]] : tensor<?xindex> to tensor<5xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_5:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_RANK_5:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_5]], %[[RESHAPED_RHS_5]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_5:.*]] = tensor_cast %[[RESULT_RANK_5]] : tensor<?x?x?x?x?xf32> to tensor<*xf32>
|
||||
// CHECK: scf.yield %[[RESULT_5]] : tensor<*xf32>
|
||||
|
@ -405,10 +413,12 @@ func @addUnrankedUnranked(
|
|||
// Handle rank 6 specialization
|
||||
// CHECK: %[[VAL_58:.*]] = scf.if %[[GREATEST_RANK_IS_6]] -> (tensor<*xf32>) {
|
||||
// CHECK: %[[CONST_SHAPE_6:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1]
|
||||
// CHECK: %[[BROADCASTED_LHS_6:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<6xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_6:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<6xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_6:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||
// CHECK: %[[BROADCASTED_LHS_6:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_LHS_6:.*]] = tensor_cast %[[BROADCASTED_LHS_6]] : tensor<?xindex> to tensor<6xindex>
|
||||
// CHECK: %[[BROADCASTED_RHS_6:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<?xindex>
|
||||
// CHECK: %[[CASTED_RHS_6:.*]] = tensor_cast %[[BROADCASTED_RHS_6]] : tensor<?xindex> to tensor<6xindex>
|
||||
// CHECK: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[CASTED_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESHAPED_RHS_6:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[CASTED_RHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_RANK_6:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_6]], %[[RESHAPED_RHS_6]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>) -> tensor<?x?x?x?x?x?xf32>
|
||||
// CHECK: %[[RESULT_6:.*]] = tensor_cast %[[RESULT_RANK_6]] : tensor<?x?x?x?x?x?xf32> to tensor<*xf32>
|
||||
// CHECK: scf.yield %[[RESULT_6]] : tensor<*xf32>
|
||||
|
|
Loading…
Reference in New Issue