Integrate LLVM at llvm/llvm-project@5c7b43aa82
Updates LLVM usage to match [5c7b43aa8298](https://github.com/llvm/llvm-project/commit/5c7b43aa8298) PiperOrigin-RevId: 373028739
This commit is contained in:
parent
2a4c63d949
commit
2af1796194
|
@ -15,9 +15,9 @@
|
||||||
|
|
||||||
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
|
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
|
||||||
|
|
||||||
LLVM_COMMIT = "9ba661f91276dd8cc728f9b2e82905b78c0119b4"
|
LLVM_COMMIT = "5c7b43aa8298a389b906d72c792941a0ce57782e"
|
||||||
|
|
||||||
LLVM_SHA256 = "f89c033b0e8e6d4e6ff5ce3883aadc82a502b063a830cd685672cec4bea3dfb1"
|
LLVM_SHA256 = "e34534a864e2bedaff6811effb757d2eed3a50c9c1e540515ed1568addf1815d"
|
||||||
|
|
||||||
LLVM_BAZEL_TAG = "llvm-project-{commit}".format(commit = LLVM_COMMIT)
|
LLVM_BAZEL_TAG = "llvm-project-{commit}".format(commit = LLVM_COMMIT)
|
||||||
|
|
||||||
|
|
|
@ -1,2 +1,2 @@
|
||||||
9ba661f91276dd8cc728f9b2e82905b78c0119b4
|
5c7b43aa8298a389b906d72c792941a0ce57782e
|
||||||
|
|
||||||
|
|
|
@ -18,8 +18,7 @@ func @dynamicBroadcast(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?
|
||||||
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
||||||
// CHECK-NEXT: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK-NEXT: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
||||||
// CHECK-DAG: %[[RESULT_S:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK-DAG: %[[RESULT_EXTENTS:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK: %[[RESULT_EXTENTS:.+]] = tensor.cast %[[RESULT_S]] : tensor<?xindex> to tensor<2xindex>
|
|
||||||
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>}
|
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>}
|
||||||
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>}
|
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>}
|
||||||
// CHECK-NEXT: %[[RESULT:.+]] = mhlo.add %[[ARG0_B]], %[[ARG1_B]]
|
// CHECK-NEXT: %[[RESULT:.+]] = mhlo.add %[[ARG0_B]], %[[ARG1_B]]
|
||||||
|
@ -39,8 +38,7 @@ func @dynamicBroadcastComplex(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> t
|
||||||
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
||||||
// CHECK-NEXT: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK-NEXT: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
||||||
// CHECK-NEXT: %[[RESULT_S:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK-NEXT: %[[RESULT_EXTENTS:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK-NEXT: %[[RESULT_EXTENTS:.+]] = tensor.cast %[[RESULT_S]] : tensor<?xindex> to tensor<2xindex>
|
|
||||||
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK-NEXT: %[[RESULT:.+]] = "mhlo.complex"(%[[ARG0_B]], %[[ARG1_B]]) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xcomplex<f32>>
|
// CHECK-NEXT: %[[RESULT:.+]] = "mhlo.complex"(%[[ARG0_B]], %[[ARG1_B]]) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xcomplex<f32>>
|
||||||
|
@ -60,8 +58,7 @@ func @dynamicBroadcastCompare(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> t
|
||||||
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
// CHECK-DAG: %[[ARG1_S:.+]] = shape.shape_of %[[ARG1]]
|
||||||
// CHECK: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK: %[[WITNESS:.+]] = shape.cstr_broadcastable %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
// CHECK: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
|
||||||
// CHECK: %[[RESULT_S:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
// CHECK: %[[RESULT_EXTENTS:.+]] = shape.broadcast %[[ARG0_S]], %[[ARG1_S]]
|
||||||
// CHECK: %[[RESULT_EXTENTS:.+]] = tensor.cast %[[RESULT_S]] : tensor<?xindex> to tensor<2xindex>
|
|
||||||
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
// CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
// CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK: %[[RESULT:.+]] = "mhlo.compare"(%[[ARG0_B]], %[[ARG1_B]]) {comparison_direction = "EQ"} : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xi1>
|
// CHECK: %[[RESULT:.+]] = "mhlo.compare"(%[[ARG0_B]], %[[ARG1_B]]) {comparison_direction = "EQ"} : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xi1>
|
||||||
|
@ -137,8 +134,7 @@ func @selectv2_dynamic_ranked(%arg0: tensor<1xi1>, %arg1: tensor<2x?x8xi32>, %ar
|
||||||
// CHECK-NEXT: %[[SHAPE1:.*]] = shape.shape_of %arg1 : tensor<2x?x8xi32> -> tensor<3xindex>
|
// CHECK-NEXT: %[[SHAPE1:.*]] = shape.shape_of %arg1 : tensor<2x?x8xi32> -> tensor<3xindex>
|
||||||
// CHECK-NEXT: %[[CSTR:.*]] = shape.cstr_broadcastable %[[SHAPE1]], %[[SHAPE0]], %[[SHAPE2]] : tensor<3xindex>, tensor<1xindex>, tensor<3xindex>
|
// CHECK-NEXT: %[[CSTR:.*]] = shape.cstr_broadcastable %[[SHAPE1]], %[[SHAPE0]], %[[SHAPE2]] : tensor<3xindex>, tensor<1xindex>, tensor<3xindex>
|
||||||
// CHECK-NEXT: %[[ASSUME:.*]] = shape.assuming %[[CSTR]] -> (tensor<2x?x8xi32>) {
|
// CHECK-NEXT: %[[ASSUME:.*]] = shape.assuming %[[CSTR]] -> (tensor<2x?x8xi32>) {
|
||||||
// CHECK-NEXT: %[[BCST_V:.*]] = shape.broadcast %[[SHAPE1]], %[[SHAPE2]] : tensor<3xindex>, tensor<3xindex> -> tensor<?xindex>
|
// CHECK-NEXT: %[[BCST:.*]] = shape.broadcast %[[SHAPE1]], %[[SHAPE2]] : tensor<3xindex>, tensor<3xindex> -> tensor<3xindex>
|
||||||
// CHECK-NEXT: %[[BCST:.*]] = tensor.cast %[[BCST_V]] : tensor<?xindex> to tensor<3xindex>
|
|
||||||
// CHECK-NEXT: %[[BCST0:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg0, %[[BCST]]) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<1xi1>, tensor<3xindex>) -> tensor<2x?x8xi1>
|
// CHECK-NEXT: %[[BCST0:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg0, %[[BCST]]) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<1xi1>, tensor<3xindex>) -> tensor<2x?x8xi1>
|
||||||
// CHECK-NEXT: %[[BCST1:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg1, %[[BCST]]) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x?x8xi32>, tensor<3xindex>) -> tensor<2x?x8xi32>
|
// CHECK-NEXT: %[[BCST1:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg1, %[[BCST]]) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x?x8xi32>, tensor<3xindex>) -> tensor<2x?x8xi32>
|
||||||
// CHECK-NEXT: %[[BCST2:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg2, %[[BCST]]) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x8x8xi32>, tensor<3xindex>) -> tensor<2x?x8xi32>
|
// CHECK-NEXT: %[[BCST2:.*]] = "mhlo.dynamic_broadcast_in_dim"(%arg2, %[[BCST]]) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x8x8xi32>, tensor<3xindex>) -> tensor<2x?x8xi32>
|
||||||
|
|
Loading…
Reference in New Issue