[HLO] Adopt custom syntax for convolution dimensions and window attributes (HLO)
PiperOrigin-RevId: 374923250
This commit is contained in:
parent
fc88cf1ff4
commit
41f663ce47
|
@ -1409,6 +1409,15 @@ def HLO_ConvOp : HLO_Op<"convolution", [NoSideEffect]> {
|
|||
[](bool v) { return v; });
|
||||
}
|
||||
}];
|
||||
|
||||
let assemblyFormat = [{
|
||||
`(`operands`)`
|
||||
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
|
||||
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
|
||||
$lhs_dilation, $rhs_dilation,
|
||||
$window_reversal) `}`
|
||||
attr-dict `:` functional-type(operands, results)
|
||||
}];
|
||||
}
|
||||
|
||||
def HLO_CopyOp: HLO_Op<"copy", [NoSideEffect, SameOperandsAndResultType]> {
|
||||
|
|
|
@ -3460,6 +3460,9 @@ OpFoldResult ScatterOp::fold(ArrayRef<Attribute> operands) {
|
|||
return DenseElementsAttr::get(base_type, results);
|
||||
}
|
||||
|
||||
using mlir::hlo::parseWindowAttributes;
|
||||
using mlir::hlo::printWindowAttributes;
|
||||
|
||||
} // namespace mhlo
|
||||
} // namespace mlir
|
||||
|
||||
|
|
|
@ -1440,3 +1440,29 @@ func @rng_uniform_invalid(%arg0: tensor<f32>, %arg1: tensor<f32>, %arg2: tensor<
|
|||
%0 = "mhlo.rng_uniform"(%arg0, %arg1, %arg2) : (tensor<f32>, tensor<f32>, tensor<7xi64>) -> tensor<?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
// CHECK: func @conv2d_generic
|
||||
// CHECK: mhlo.convolution
|
||||
// CHECK-SAME: dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
|
||||
// CHECK-SAME{LITERAL}: window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1]}
|
||||
func @conv2d_generic(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>) -> tensor<1x8x8x16xf32> {
|
||||
%0 = "mhlo.convolution"(%arg0, %arg1) {batch_group_count = 1 : i64, dimension_numbers =
|
||||
{input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>},
|
||||
feature_group_count = 1 : i64, lhs_dilation = dense<1> : tensor<2xi64>, padding = dense<1> : tensor<2x2xi64>, precision_config = ["DEFAULT", "DEFAULT"], rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64>} :
|
||||
(tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>) -> tensor<1x8x8x16xf32>
|
||||
return %0 : tensor<1x8x8x16xf32>
|
||||
}
|
||||
|
||||
// CHECK: func @conv2d
|
||||
// CHECK: mhlo.convolution
|
||||
// CHECK-SAME: dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
|
||||
// CHECK-SAME{LITERAL}: window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1]}
|
||||
func @conv2d(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>) -> tensor<1x8x8x16xf32> {
|
||||
%0 = mhlo.convolution(%arg0, %arg1)
|
||||
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
|
||||
window = {stride = [1, 1], pad = [[1, 1], [1, 1]], lhs_dilate = [1, 1], rhs_dilate = [1, 1]}
|
||||
{batch_group_count = 1 : i64, feature_group_count = 1 : i64, precision_config = ["DEFAULT", "DEFAULT"]} :
|
||||
(tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>) -> tensor<1x8x8x16xf32>
|
||||
return %0 : tensor<1x8x8x16xf32>
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue