[MLIR:HLO] Extend AllReduce to support multiple inputs and results (to model tuples).
- Instead of SameTypeOperands, add custom verification to check if operands and results pairwise have the same type. PiperOrigin-RevId: 353986341
This commit is contained in:
parent
471fc63c11
commit
44deae2aa1
|
@ -544,17 +544,18 @@ def LHLO_ReducePrecisionOp: LHLO_Op<"reduce_precision", [SameTypeOperands]>,
|
|||
);
|
||||
}
|
||||
|
||||
def LHLO_AllReduceOp : LHLO_Op<"all_reduce", [SameTypeOperands]>,
|
||||
def LHLO_AllReduceOp : LHLO_Op<"all_reduce", [SameVariadicOperandSize]>,
|
||||
BASE_HLO_AllReduceOp {
|
||||
let arguments = (ins
|
||||
Arg<LHLO_Buffer, "", [MemRead]>:$operand,
|
||||
Arg<LHLO_Buffer, "", [MemWrite]>:$output,
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$operands,
|
||||
Arg<Variadic<LHLO_Buffer>, "", [MemWrite]>:$results,
|
||||
I64ElementsAttr:$replica_groups,
|
||||
DefaultValuedAttr<BoolAttr, "false">:$constrain_layout,
|
||||
OptionalAttr<ChannelHandle>:$channel_id,
|
||||
DefaultValuedAttr<BoolAttr, "false">:$use_global_device_ids
|
||||
);
|
||||
let regions = (region SizedRegion<1>:$computation);
|
||||
let verifier = [{ return Verify(*this); }];
|
||||
}
|
||||
|
||||
def LHLO_CollectivePermuteOp: LHLO_Op<"collective_permute", [SameTypeOperands]>,
|
||||
|
|
|
@ -56,6 +56,41 @@ LmhloDialect::LmhloDialect(MLIRContext *context)
|
|||
>();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// AllReduceOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static LogicalResult Verify(AllReduceOp op) {
|
||||
// AllReduce had variadic operands and results that have the same size.
|
||||
// Each memeber of the operand should have the same type as the corresponding
|
||||
// member of the result.
|
||||
for (auto it : llvm::enumerate(
|
||||
llvm::zip(op.operands().getTypes(), op.results().getTypes()))) {
|
||||
Type operandType = std::get<0>(it.value());
|
||||
Type resultType = std::get<1>(it.value());
|
||||
if (operandType != resultType)
|
||||
return op.emitOpError("requires operand #")
|
||||
<< it.index() << " (type: " << operandType << ") and result #"
|
||||
<< it.index() << " (type: " << resultType << ") to have same type";
|
||||
}
|
||||
|
||||
// Since AllReduce has a single reduction computation attached to it (which is
|
||||
// applied over all the operands and results), they all need to have the same
|
||||
// element type. Since we already check that each operand and corresponding
|
||||
// result has the same type, its sufficient to check just the memref element
|
||||
// type for each operands.
|
||||
Type elementType =
|
||||
op.operands().front().getType().cast<MemRefType>().getElementType();
|
||||
bool allMatch = llvm::all_of(
|
||||
op.operands().drop_front().getType(), [elementType](Type type) {
|
||||
return type.cast<MemRefType>().getElementType() == elementType;
|
||||
});
|
||||
if (!allMatch)
|
||||
return op.emitOpError("requires all operands to have same element type");
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ConstOp.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
|
|
@ -2,6 +2,36 @@
|
|||
|
||||
// -----
|
||||
|
||||
func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf32>) {
|
||||
// expected-error@+1 {{requires operand #1 (type: 'memref<3xf32>') and result #1 (type: 'memref<2xf32>') to have same type}}
|
||||
"lmhlo.all_reduce"(%input0, %input1, %input0, %input0) ({
|
||||
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
|
||||
%add = mhlo.add %arg0, %arg1 : tensor<f32>
|
||||
"mhlo.return"(%add) : (tensor<f32>) -> ()
|
||||
})
|
||||
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
|
||||
replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>,
|
||||
use_global_device_ids = false} : (memref<2xf32>, memref<3xf32>, memref<2xf32>, memref<2xf32>) -> ()
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf16>) {
|
||||
// expected-error@+1 {{requires all operands to have same element type}}
|
||||
"lmhlo.all_reduce"(%input0, %input1, %input0, %input1) ({
|
||||
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
|
||||
%add = mhlo.add %arg0, %arg1 : tensor<f32>
|
||||
"mhlo.return"(%add) : (tensor<f32>) -> ()
|
||||
})
|
||||
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
|
||||
replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>,
|
||||
use_global_device_ids = false} : (memref<2xf32>, memref<3xf16>, memref<2xf32>, memref<3xf16>) -> ()
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @ceil
|
||||
func @ceil(%input: memref<2x2xf32>, %result: memref<2x2xf32>) {
|
||||
"lmhlo.ceil"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> ()
|
||||
|
|
Loading…
Reference in New Issue