[MLIR:HLO] Extend AllReduce to support multiple inputs and results (to model tuples).
- Instead of SameTypeOperands, add custom verification to check if operands and results pairwise have the same type. PiperOrigin-RevId: 353986341
This commit is contained in:
		
							parent
							
								
									471fc63c11
								
							
						
					
					
						commit
						44deae2aa1
					
				|  | @ -544,17 +544,18 @@ def LHLO_ReducePrecisionOp: LHLO_Op<"reduce_precision", [SameTypeOperands]>, | |||
|   ); | ||||
| } | ||||
| 
 | ||||
| def LHLO_AllReduceOp : LHLO_Op<"all_reduce", [SameTypeOperands]>, | ||||
| def LHLO_AllReduceOp : LHLO_Op<"all_reduce", [SameVariadicOperandSize]>, | ||||
|                        BASE_HLO_AllReduceOp { | ||||
|   let arguments = (ins | ||||
|     Arg<LHLO_Buffer, "", [MemRead]>:$operand, | ||||
|     Arg<LHLO_Buffer, "", [MemWrite]>:$output, | ||||
|     Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$operands, | ||||
|     Arg<Variadic<LHLO_Buffer>, "", [MemWrite]>:$results, | ||||
|     I64ElementsAttr:$replica_groups, | ||||
|     DefaultValuedAttr<BoolAttr, "false">:$constrain_layout, | ||||
|     OptionalAttr<ChannelHandle>:$channel_id, | ||||
|     DefaultValuedAttr<BoolAttr, "false">:$use_global_device_ids | ||||
|   ); | ||||
|   let regions = (region SizedRegion<1>:$computation); | ||||
|   let verifier = [{ return Verify(*this); }]; | ||||
| } | ||||
| 
 | ||||
| def LHLO_CollectivePermuteOp: LHLO_Op<"collective_permute", [SameTypeOperands]>, | ||||
|  |  | |||
|  | @ -48,7 +48,7 @@ limitations under the License. | |||
| namespace mlir { | ||||
| namespace lmhlo { | ||||
| 
 | ||||
| LmhloDialect::LmhloDialect(MLIRContext *context) | ||||
| LmhloDialect::LmhloDialect(MLIRContext* context) | ||||
|     : Dialect(getDialectNamespace(), context, TypeID::get<LmhloDialect>()) { | ||||
|   addOperations< | ||||
| #define GET_OP_LIST | ||||
|  | @ -56,6 +56,41 @@ LmhloDialect::LmhloDialect(MLIRContext *context) | |||
|       >(); | ||||
| } | ||||
| 
 | ||||
| //===----------------------------------------------------------------------===//
 | ||||
| // AllReduceOp
 | ||||
| //===----------------------------------------------------------------------===//
 | ||||
| 
 | ||||
| static LogicalResult Verify(AllReduceOp op) { | ||||
|   // AllReduce had variadic operands and results that have the same size.
 | ||||
|   // Each memeber of the operand should have the same type as the corresponding
 | ||||
|   // member of the result.
 | ||||
|   for (auto it : llvm::enumerate( | ||||
|            llvm::zip(op.operands().getTypes(), op.results().getTypes()))) { | ||||
|     Type operandType = std::get<0>(it.value()); | ||||
|     Type resultType = std::get<1>(it.value()); | ||||
|     if (operandType != resultType) | ||||
|       return op.emitOpError("requires operand #") | ||||
|              << it.index() << " (type: " << operandType << ") and result #" | ||||
|              << it.index() << " (type: " << resultType << ") to have same type"; | ||||
|   } | ||||
| 
 | ||||
|   // Since AllReduce has a single reduction computation attached to it (which is
 | ||||
|   // applied over all the operands and results), they all need to have the same
 | ||||
|   // element type. Since we already check that each operand and corresponding
 | ||||
|   // result has the same type, its sufficient to check just the memref element
 | ||||
|   // type for each operands.
 | ||||
|   Type elementType = | ||||
|       op.operands().front().getType().cast<MemRefType>().getElementType(); | ||||
|   bool allMatch = llvm::all_of( | ||||
|       op.operands().drop_front().getType(), [elementType](Type type) { | ||||
|         return type.cast<MemRefType>().getElementType() == elementType; | ||||
|       }); | ||||
|   if (!allMatch) | ||||
|     return op.emitOpError("requires all operands to have same element type"); | ||||
| 
 | ||||
|   return success(); | ||||
| } | ||||
| 
 | ||||
| //===----------------------------------------------------------------------===//
 | ||||
| // ConstOp.
 | ||||
| //===----------------------------------------------------------------------===//
 | ||||
|  | @ -99,10 +134,10 @@ namespace lmhlo { | |||
| 
 | ||||
| // TODO(cheshire): Support folding, reuse code from hlo_ops.cc.
 | ||||
| 
 | ||||
| void FusionOp::build(OpBuilder &builder, OperationState &result, | ||||
| void FusionOp::build(OpBuilder& builder, OperationState& result, | ||||
|                      ArrayRef<NamedAttribute> attributes) { | ||||
|   result.addAttributes(attributes); | ||||
|   Region *bodyRegion = result.addRegion(); | ||||
|   Region* bodyRegion = result.addRegion(); | ||||
|   FusionOp::ensureTerminator(*bodyRegion, builder, result.location); | ||||
| } | ||||
| 
 | ||||
|  |  | |||
|  | @ -2,6 +2,36 @@ | |||
| 
 | ||||
| // ----- | ||||
| 
 | ||||
| func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf32>) { | ||||
|   // expected-error@+1 {{requires operand #1 (type: 'memref<3xf32>') and result #1 (type: 'memref<2xf32>') to have same type}} | ||||
|   "lmhlo.all_reduce"(%input0, %input1, %input0, %input0) ({ | ||||
|     ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>): | ||||
|       %add = mhlo.add %arg0, %arg1 : tensor<f32> | ||||
|       "mhlo.return"(%add) : (tensor<f32>) -> () | ||||
|     }) | ||||
|   {channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false, | ||||
|    replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>, | ||||
|    use_global_device_ids = false} : (memref<2xf32>, memref<3xf32>, memref<2xf32>, memref<2xf32>) -> () | ||||
|   return | ||||
| } | ||||
| 
 | ||||
| // ----- | ||||
| 
 | ||||
| func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf16>) { | ||||
|   // expected-error@+1 {{requires all operands to have same element type}} | ||||
|   "lmhlo.all_reduce"(%input0, %input1, %input0, %input1) ({ | ||||
|     ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>): | ||||
|       %add = mhlo.add %arg0, %arg1 : tensor<f32> | ||||
|       "mhlo.return"(%add) : (tensor<f32>) -> () | ||||
|     }) | ||||
|   {channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false, | ||||
|    replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>, | ||||
|    use_global_device_ids = false} : (memref<2xf32>, memref<3xf16>, memref<2xf32>, memref<3xf16>) -> () | ||||
|   return | ||||
| } | ||||
| 
 | ||||
| // ----- | ||||
| 
 | ||||
| // CHECK-LABEL: func @ceil | ||||
| func @ceil(%input: memref<2x2xf32>, %result: memref<2x2xf32>) { | ||||
|   "lmhlo.ceil"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> () | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue