[MHLO] Move broadcasts over elementwise ops

Move up dynamic broadcasts and shape computations to allow for more fusion
opportunities.

PiperOrigin-RevId: 364514158
This commit is contained in:
A. Unique TensorFlower 2021-03-23 02:33:46 -07:00 committed by TensorFlow MLIR Team
parent 98debb127d
commit 54f37abc28
2 changed files with 118 additions and 1 deletions

View File

@ -76,6 +76,67 @@ struct ShapeOfOpConversion : public OpConversionPattern<shape::ShapeOfOp> {
}
};
// We can only move up broadcasting ops that apply to the result of a
// shape-preserving operation. For now, we restrict this to unary operations.
// TODO(frgossen): Generalize this to n-ary operations.
bool isDynamicBroadcastInDimOpMovable(Value operand) {
Operation *producer_op = operand.getDefiningOp();
return producer_op != nullptr &&
producer_op->hasTrait<OpTrait::SameOperandsAndResultShape>() &&
producer_op->hasTrait<OpTrait::Elementwise>() &&
producer_op->getNumOperands() == 1;
}
// TODO(frgossen): Only move up broadcasting operations if there is a consumer.
struct MoveUpBroadcastInDimOpConversion
: public OpConversionPattern<DynamicBroadcastInDimOp> {
explicit MoveUpBroadcastInDimOpConversion(MLIRContext *context)
: OpConversionPattern<DynamicBroadcastInDimOp>(context) {}
LogicalResult matchAndRewrite(
DynamicBroadcastInDimOp bcast_op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// We can only move up broadcasting ops that apply to the result of a
// shape-preserving operation.
DynamicBroadcastInDimOp::Adaptor transformed(operands);
if (!isDynamicBroadcastInDimOpMovable(transformed.operand()))
return failure();
// Materialize broadcast on operands.
SmallVector<Value, 2> bcasted_operands;
Location loc = bcast_op.getLoc();
ArrayRef<int64_t> ty_shape = bcast_op.getType().getShape();
Operation *producer_op = transformed.operand().getDefiningOp();
for (Value operand : producer_op->getOperands()) {
// The broadcast only works on ranked operations.
auto operand_ty = operand.getType().dyn_cast<RankedTensorType>();
if (!operand_ty) {
return bcast_op.emitError()
<< "Can only move up broadcasts over ranked tensor operands.";
}
auto bcasted_operand_ty =
RankedTensorType::get(ty_shape, operand_ty.getElementType());
bcasted_operands.push_back(rewriter.create<DynamicBroadcastInDimOp>(
loc, bcasted_operand_ty, operand, transformed.output_dimensions(),
bcast_op.broadcast_dimensions()));
}
// Create a copy of the producer op with the new broadcasted operands.
OperationState new_producer_op_state(
loc, producer_op->getName().getStringRef(), bcasted_operands,
bcast_op.getType(), producer_op->getAttrs());
Operation *new_producer_op =
rewriter.createOperation(new_producer_op_state);
// The original result of the broadcast now falls directly out of the new
// producer op. Use it instead.
rewriter.replaceOp(bcast_op, new_producer_op->getResults());
return success();
}
};
struct MoveUpDynamicBroadcastsForFusionPass
: public PassWrapper<MoveUpDynamicBroadcastsForFusionPass, FunctionPass> {
void getDependentDialects(DialectRegistry &registry) const override {
@ -108,12 +169,17 @@ void PopulateMoveUpDynamicBroadcastsForFusionLegality(
tensor::TensorDialect>();
target->addDynamicallyLegalOp<shape::ShapeOfOp>(
[](shape::ShapeOfOp op) { return !IsShapeOfOpMovable(op.arg()); });
target->addDynamicallyLegalOp<DynamicBroadcastInDimOp>(
[](DynamicBroadcastInDimOp op) {
return !isDynamicBroadcastInDimOpMovable(op.operand());
});
}
void PopulateMoveUpDynamicBroadcastsForFusionPatterns(
MLIRContext *context, OwningRewritePatternList *patterns) {
// clang-format off
patterns->insert<ShapeOfOpConversion>(context);
patterns->insert<ShapeOfOpConversion,
MoveUpBroadcastInDimOpConversion>(context);
// clang-format on
}

View File

@ -26,3 +26,54 @@ func @shape_of_nary(%arg0 : tensor<?x32xf16>, %arg1 : tensor<?x32xf16>) {
"use"(%2) : (tensor<?xindex>) -> ()
return
}
// -----
// Broadcasts can be moved up over shape-preserving operations.
// CHECK-LABEL: @bcast
// CHECK-SAME: (%[[ARG:.*]]: tensor<?x32xi16>, %[[OUT_DIMS:.*]]: tensor<3xindex>)
func @bcast(%arg : tensor<?x32xi16>, %out_dims : tensor<3xindex>)
-> tensor<?x?x32xf16> {
// CHECK: %[[BCASTED_OPERAND:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG]], %[[OUT_DIMS]])
// CHECK-SAME: broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x32xi16>, tensor<3xindex>) -> tensor<?x?x32xi16>
// CHECK: "mhlo.convert"(%[[BCASTED_OPERAND]]) : (tensor<?x?x32xi16>) -> tensor<?x?x32xf16>
%0 = "mhlo.convert"(%arg) : (tensor<?x32xi16>) -> tensor<?x32xf16>
%1 = "mhlo.dynamic_broadcast_in_dim"(%0, %out_dims) {
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64> } :
(tensor<?x32xf16>, tensor<3xindex>) -> tensor<?x?x32xf16>
return %1 : tensor<?x?x32xf16>
}
// -----
// Exemplary IR as it appears in the lowering with `tf.Sub` and `tf.Cast`.
// CHECK-LABEL: @cast_sub
// CHECK-SAME: (%[[ARG0:.*]]: tensor<?x32xi16>, %[[ARG1:.*]]: tensor<?x?x32xf16>) -> tensor<?x?x32xf16>
func @cast_sub(%arg0: tensor<?x32xi16>, %arg1: tensor<?x?x32xf16>)
-> tensor<?x?x32xf16> {
// CHECK-NOT: convert
// CHECK: %[[BCASTED_ARG1:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %{{.*}})
// CHECK: %[[BCASTED_ARG0:.*]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %{{.*}})
// CHECK: %[[CONVERTED_BCASTED_ARG0:.*]] = "mhlo.convert"(%[[BCASTED_ARG0]]) : (tensor<?x?x32xi16>) -> tensor<?x?x32xf16>
// CHECK: %{{.*}} = mhlo.subtract %[[BCASTED_ARG1]], %[[CONVERTED_BCASTED_ARG0]] : tensor<?x?x32xf16>
%0 = "mhlo.convert"(%arg0) : (tensor<?x32xi16>) -> tensor<?x32xf16>
%1 = shape.shape_of %arg1 : tensor<?x?x32xf16> -> tensor<?xindex>
%2 = shape.shape_of %0 : tensor<?x32xf16> -> tensor<?xindex>
%3 = shape.cstr_broadcastable %1, %2 : tensor<?xindex>, tensor<?xindex>
%4 = shape.assuming %3 -> (tensor<?x?x32xf16>) {
%5 = shape.shape_of %arg1 : tensor<?x?x32xf16> -> tensor<?xindex>
%6 = shape.shape_of %0 : tensor<?x32xf16> -> tensor<?xindex>
%7 = shape.broadcast %5, %6 : tensor<?xindex>, tensor<?xindex>
-> tensor<?xindex>
%8 = tensor.cast %7 : tensor<?xindex> to tensor<3xindex>
%9 = "mhlo.dynamic_broadcast_in_dim"(%arg1, %8) {
broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} :
(tensor<?x?x32xf16>, tensor<3xindex>) -> tensor<?x?x32xf16>
%10 = "mhlo.dynamic_broadcast_in_dim"(%0, %8) {
broadcast_dimensions = dense<[1, 2]> : tensor<2xi64>} :
(tensor<?x32xf16>, tensor<3xindex>) -> tensor<?x?x32xf16>
%11 = mhlo.subtract %9, %10 : tensor<?x?x32xf16>
shape.assuming_yield %11 : tensor<?x?x32xf16>
}
return %4 : tensor<?x?x32xf16>
}