[KERNEL_GEN] Add unranked Conj kernel.

PiperOrigin-RevId: 344243271
This commit is contained in:
Alexander Belyaev 2020-11-25 06:36:42 -08:00 committed by TensorFlow MLIR Team
parent a6948f6b41
commit 5583c63cab
4 changed files with 31 additions and 2 deletions

View File

@ -372,6 +372,19 @@ def HLOClient_AtanOp : HLOClient_UnaryElementwiseOp<"atan", [],
}];
}
def HLOClient_ConjOp : HLOClient_UnaryElementwiseOp<"conj", [],
HLO_FpOrComplexTensor> {
let summary = "Conj operator";
let description = [{
Returns `Conj(operand)` element-wise.
$$
\conj(x) = (\real(x), \neg(\imag(x)))
$$
}];
}
def HLOClient_SinhOp : HLOClient_UnaryElementwiseOp<"sinh", [],
HLO_FpOrComplexTensor> {
let summary = "Sinh operation";

View File

@ -60,6 +60,11 @@ def : Pat<(HLOClient_AtanOp $input),
(HLO_ConstantLike<"1"> $input)
)>;
// Express `conj` as
// conj(x) = (re(x), -im(x)).
def : Pat<(HLOClient_ConjOp $v),
(HLO_ComplexOp (HLO_RealOp $v), (HLO_NegOp (HLO_ImagOp $v)))>;
// Express `sinh` as
// sinh(x) = (e^x - e^-x) / 2 if |x| < 1
// = e^(x + log(1/2)) - e^(-x + log(1/2)) otherwise.

View File

@ -50,8 +50,8 @@ namespace {
// TODO(herhut): Generate these out of op definitions.
#define MAP_CHLO_OPERATION_CWISE_UNARY(fn, sep) \
fn(AcosOp) sep fn(AtanOp) sep fn(ErfOp) sep fn(ErfcOp) sep fn(SinhOp) \
sep fn(TanOp)
fn(AcosOp) sep fn(AtanOp) sep fn(ConjOp) sep fn(ErfOp) sep fn(ErfcOp) \
sep fn(SinhOp) sep fn(TanOp)
template <typename OpTy>
inline void AddLegalOpOnRankedTensor(ConversionTarget *target) {

View File

@ -24,3 +24,14 @@ func @constant_like_dynamic_shape(%arg : tensor<?x?xi64>) -> tensor<?x?xf32> {
return %result : tensor<?x?xf32>
}
// CHECK-LABEL: func @conj
func @conj(%arg0: tensor<3xcomplex<f32>>) -> tensor<3xcomplex<f32>> {
// CHECK-SAME: ([[INPUT:%.*]]: tensor
// CHECK-NEXT: [[R1:%.*]] = "mhlo.real"([[INPUT]])
// CHECK-NEXT: [[R2:%.*]] = "mhlo.imag"([[INPUT]])
// CHECK-NEXT: [[R3:%.*]] = "mhlo.negate"([[R2]])
// CHECK-NEXT: [[R4:%.*]] = "mhlo.complex"([[R1]], [[R3]])
%1 = "chlo.conj"(%arg0) : (tensor<3xcomplex<f32>>) -> tensor<3xcomplex<f32>>
return %1 : tensor<3xcomplex<f32>>
}