Properly handle if DynamicBroadcastInDimOp shape is not of index type.
* The op defines this to be index, any integer, or pred (i1). * Many TensorFlow legalizations produce integers for the shape. PiperOrigin-RevId: 374566113
This commit is contained in:
parent
0fe07e3814
commit
71394fb301
|
@ -536,6 +536,9 @@ class HloDynamicBroadcastInDimConverter
|
|||
Value shape = adaptor.output_dimensions();
|
||||
auto shape_type = shape.getType().cast<RankedTensorType>();
|
||||
int64_t result_rank = shape_type.getDimSize(0);
|
||||
// HLO dimension types can be any integer, as well as index.
|
||||
bool convert_to_index =
|
||||
shape_type.getElementType() != rewriter.getIndexType();
|
||||
|
||||
auto result_type = op.getType().dyn_cast<RankedTensorType>();
|
||||
if (!result_type) return failure();
|
||||
|
@ -545,7 +548,11 @@ class HloDynamicBroadcastInDimConverter
|
|||
for (int i = 0; i < result_rank; ++i) {
|
||||
if (!result_type.isDynamicDim(i)) continue;
|
||||
Value index = rewriter.create<ConstantIndexOp>(loc, i);
|
||||
dyn_dims.push_back(rewriter.create<tensor::ExtractOp>(loc, shape, index));
|
||||
Value dim = rewriter.create<tensor::ExtractOp>(loc, shape, index);
|
||||
if (convert_to_index) {
|
||||
dim = rewriter.create<IndexCastOp>(loc, rewriter.getIndexType(), dim);
|
||||
}
|
||||
dyn_dims.push_back(dim);
|
||||
}
|
||||
|
||||
int64_t nloops = result_type.getRank();
|
||||
|
|
|
@ -1054,6 +1054,19 @@ func @dynamic_broadcast_in_dim(%vector: tensor<42xf32>, %shape: tensor<3xindex>)
|
|||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: func @dynamic_broadcast_in_dim(
|
||||
// Note: this test requires no checks. The linalg init_tensor verifier will
|
||||
// fail if the %shape i32 -> index cast is not performed properly.
|
||||
func @dynamic_broadcast_in_dim(%scalar: tensor<f32>, %shape: tensor<2xi32>)
|
||||
-> tensor<?x32xf32> {
|
||||
%result = "mhlo.dynamic_broadcast_in_dim"(%scalar, %shape) {
|
||||
broadcast_dimensions = dense<> : tensor<0xi64>
|
||||
} : (tensor<f32>, tensor<2xi32>) -> tensor<?x32xf32>
|
||||
return %result : tensor<?x32xf32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
func @dot_matmul(%arg0: tensor<2x3xf32>,
|
||||
%arg1: tensor<3x?xf32>) -> tensor<2x?xf32> {
|
||||
%0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xf32>,
|
||||
|
|
Loading…
Reference in New Issue