Integrate LLVM at llvm/llvm-project@cd4e8d7f6f
Updates LLVM usage to match [cd4e8d7f6f5e](https://github.com/llvm/llvm-project/commit/cd4e8d7f6f5e) PiperOrigin-RevId: 324173542
This commit is contained in:
parent
d83d437588
commit
735ae2838c
|
@ -350,22 +350,18 @@ struct ConvertUnrankedDynamicBroadcastBinaryOp
|
||||||
// TODO(tpopp): Return extent tensors when possible to signal that this is a
|
// TODO(tpopp): Return extent tensors when possible to signal that this is a
|
||||||
// guaranteed safe broadcast by construction.
|
// guaranteed safe broadcast by construction.
|
||||||
Value extended_lhs = if_builder.create<shape::BroadcastOp>(
|
Value extended_lhs = if_builder.create<shape::BroadcastOp>(
|
||||||
loc, lhs_shape, ranked_shape_val, nullptr);
|
loc, extent_tensor_type, lhs_shape, ranked_shape_val, nullptr);
|
||||||
Value extended_rhs = if_builder.create<shape::BroadcastOp>(
|
Value extended_rhs = if_builder.create<shape::BroadcastOp>(
|
||||||
loc, rhs_shape, ranked_shape_val, nullptr);
|
loc, extent_tensor_type, rhs_shape, ranked_shape_val, nullptr);
|
||||||
Value lhs_extent_tensor = if_builder.create<shape::ToExtentTensorOp>(
|
|
||||||
loc, extent_tensor_type, extended_lhs);
|
|
||||||
Value rhs_extent_tensor = if_builder.create<shape::ToExtentTensorOp>(
|
|
||||||
loc, extent_tensor_type, extended_rhs);
|
|
||||||
|
|
||||||
// 1. Reshape operands to the given rank (with the same number of elements)
|
// 1. Reshape operands to the given rank (with the same number of elements)
|
||||||
// 2. Compute the ranked-broadcasted ChloOp (which will assert that the ops
|
// 2. Compute the ranked-broadcasted ChloOp (which will assert that the ops
|
||||||
// can be broadcasted and do the actual broadcasting)
|
// can be broadcasted and do the actual broadcasting)
|
||||||
// 3. Type erase the output back to unranked
|
// 3. Type erase the output back to unranked
|
||||||
Value reshaped_lhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
Value reshaped_lhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
||||||
loc, reshaped_type, lhs, lhs_extent_tensor);
|
loc, reshaped_type, lhs, extended_lhs);
|
||||||
Value reshaped_rhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
Value reshaped_rhs = if_builder.create<mhlo::DynamicReshapeOp>(
|
||||||
loc, reshaped_type, rhs, rhs_extent_tensor);
|
loc, reshaped_type, rhs, extended_rhs);
|
||||||
Value result = if_builder.create<ChloOpTy>(
|
Value result = if_builder.create<ChloOpTy>(
|
||||||
loc, ArrayRef<Type>{reshaped_type},
|
loc, ArrayRef<Type>{reshaped_type},
|
||||||
ArrayRef<Value>{reshaped_lhs, reshaped_rhs}, op.getAttrs());
|
ArrayRef<Value>{reshaped_lhs, reshaped_rhs}, op.getAttrs());
|
||||||
|
|
|
@ -61,7 +61,8 @@ Value ComputeBinaryElementwiseBroadcastingResultExtents(Location loc, Value lhs,
|
||||||
Value lhs_shape_v = builder.createOrFold<shape::ShapeOfOp>(loc, lhs);
|
Value lhs_shape_v = builder.createOrFold<shape::ShapeOfOp>(loc, lhs);
|
||||||
Value rhs_shape_v = builder.createOrFold<shape::ShapeOfOp>(loc, rhs);
|
Value rhs_shape_v = builder.createOrFold<shape::ShapeOfOp>(loc, rhs);
|
||||||
Value result_shape_v = builder.createOrFold<shape::BroadcastOp>(
|
Value result_shape_v = builder.createOrFold<shape::BroadcastOp>(
|
||||||
loc, lhs_shape_v, rhs_shape_v, nullptr /* error */);
|
loc, shape::ShapeType::get(builder.getContext()), lhs_shape_v,
|
||||||
|
rhs_shape_v, nullptr /* error */);
|
||||||
return builder.createOrFold<shape::ToExtentTensorOp>(
|
return builder.createOrFold<shape::ToExtentTensorOp>(
|
||||||
loc, RankedTensorType::get({result_rank}, builder.getIndexType()),
|
loc, RankedTensorType::get({result_rank}, builder.getIndexType()),
|
||||||
result_shape_v);
|
result_shape_v);
|
||||||
|
|
|
@ -353,12 +353,10 @@ func @addUnrankedUnranked(
|
||||||
// Handle rank 2 specialization
|
// Handle rank 2 specialization
|
||||||
// CHECK: %[[VAL_26:.*]] = scf.if %[[GREATEST_RANK_IS_2]] -> (tensor<*xf32>) {
|
// CHECK: %[[VAL_26:.*]] = scf.if %[[GREATEST_RANK_IS_2]] -> (tensor<*xf32>) {
|
||||||
// CHECK: %[[CONST_SHAPE_2:.*]] = shape.const_shape [1, 1]
|
// CHECK: %[[CONST_SHAPE_2:.*]] = shape.const_shape [1, 1]
|
||||||
// CHECK: %[[BROADCASTED_LHS_2:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_2]]
|
// CHECK: %[[BROADCASTED_LHS_2:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<2xindex>
|
||||||
// CHECK: %[[BROADCASTED_RHS_2:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_2]]
|
// CHECK: %[[BROADCASTED_RHS_2:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_2]] : tensor<?xindex>, tensor<2xindex> -> tensor<2xindex>
|
||||||
// CHECK: %[[EXTENT_LHS_2:.*]] = shape.to_extent_tensor %[[BROADCASTED_LHS_2]] : !shape.shape -> tensor<2xindex>
|
// CHECK: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK: %[[EXTENT_RHS_2:.*]] = shape.to_extent_tensor %[[BROADCASTED_RHS_2]] : !shape.shape -> tensor<2xindex>
|
// CHECK: %[[RESHAPED_RHS_2:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
||||||
// CHECK: %[[RESHAPED_LHS_2:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[EXTENT_LHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
|
||||||
// CHECK: %[[RESHAPED_RHS_2:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[EXTENT_RHS_2]]) : (tensor<*xf32>, tensor<2xindex>) -> tensor<?x?xf32>
|
|
||||||
// CHECK: %[[RESULT_RANK_2:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_2]], %[[RESHAPED_RHS_2]] : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
|
// CHECK: %[[RESULT_RANK_2:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_2]], %[[RESHAPED_RHS_2]] : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
|
||||||
// CHECK: %[[RESULT_2:.*]] = tensor_cast %[[RESULT_RANK_2]] : tensor<?x?xf32> to tensor<*xf32>
|
// CHECK: %[[RESULT_2:.*]] = tensor_cast %[[RESULT_RANK_2]] : tensor<?x?xf32> to tensor<*xf32>
|
||||||
// CHECK: scf.yield %[[RESULT_2]] : tensor<*xf32>
|
// CHECK: scf.yield %[[RESULT_2]] : tensor<*xf32>
|
||||||
|
@ -368,12 +366,10 @@ func @addUnrankedUnranked(
|
||||||
// Handle rank 3 specialization
|
// Handle rank 3 specialization
|
||||||
// CHECK: %[[VAL_34:.*]] = scf.if %[[GREATEST_RANK_IS_3]] -> (tensor<*xf32>) {
|
// CHECK: %[[VAL_34:.*]] = scf.if %[[GREATEST_RANK_IS_3]] -> (tensor<*xf32>) {
|
||||||
// CHECK: %[[CONST_SHAPE_3:.*]] = shape.const_shape [1, 1, 1]
|
// CHECK: %[[CONST_SHAPE_3:.*]] = shape.const_shape [1, 1, 1]
|
||||||
// CHECK: %[[BROADCASTED_LHS_3:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_3]]
|
// CHECK: %[[BROADCASTED_LHS_3:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<3xindex>
|
||||||
// CHECK: %[[BROADCASTED_RHS_3:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_3]]
|
// CHECK: %[[BROADCASTED_RHS_3:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_3]] : tensor<?xindex>, tensor<3xindex> -> tensor<3xindex>
|
||||||
// CHECK: %[[EXTENT_LHS_3:.*]] = shape.to_extent_tensor %[[BROADCASTED_LHS_3]] : !shape.shape -> tensor<3xindex>
|
// CHECK: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||||
// CHECK: %[[EXTENT_RHS_3:.*]] = shape.to_extent_tensor %[[BROADCASTED_RHS_3]] : !shape.shape -> tensor<3xindex>
|
// CHECK: %[[RESHAPED_RHS_3:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
||||||
// CHECK: %[[RESHAPED_LHS_3:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[EXTENT_LHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
|
||||||
// CHECK: %[[RESHAPED_RHS_3:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[EXTENT_RHS_3]]) : (tensor<*xf32>, tensor<3xindex>) -> tensor<?x?x?xf32>
|
|
||||||
// CHECK: %[[RESULT_RANK_3:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_3]], %[[RESHAPED_RHS_3]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
// CHECK: %[[RESULT_RANK_3:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_3]], %[[RESHAPED_RHS_3]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
||||||
// CHECK: %[[RESULT_3:.*]] = tensor_cast %[[RESULT_RANK_3]] : tensor<?x?x?xf32> to tensor<*xf32>
|
// CHECK: %[[RESULT_3:.*]] = tensor_cast %[[RESULT_RANK_3]] : tensor<?x?x?xf32> to tensor<*xf32>
|
||||||
// CHECK: scf.yield %[[RESULT_3]] : tensor<*xf32>
|
// CHECK: scf.yield %[[RESULT_3]] : tensor<*xf32>
|
||||||
|
@ -383,12 +379,10 @@ func @addUnrankedUnranked(
|
||||||
// Handle rank 4 specialization
|
// Handle rank 4 specialization
|
||||||
// CHECK: %[[VAL_42:.*]] = scf.if %[[GREATEST_RANK_IS_4]] -> (tensor<*xf32>) {
|
// CHECK: %[[VAL_42:.*]] = scf.if %[[GREATEST_RANK_IS_4]] -> (tensor<*xf32>) {
|
||||||
// CHECK: %[[CONST_SHAPE_4:.*]] = shape.const_shape [1, 1, 1, 1]
|
// CHECK: %[[CONST_SHAPE_4:.*]] = shape.const_shape [1, 1, 1, 1]
|
||||||
// CHECK: %[[BROADCASTED_LHS_4:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_4]]
|
// CHECK: %[[BROADCASTED_LHS_4:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<4xindex>
|
||||||
// CHECK: %[[BROADCASTED_RHS_4:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_4]]
|
// CHECK: %[[BROADCASTED_RHS_4:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_4]] : tensor<?xindex>, tensor<4xindex> -> tensor<4xindex>
|
||||||
// CHECK: %[[EXTENT_LHS_4:.*]] = shape.to_extent_tensor %[[BROADCASTED_LHS_4]] : !shape.shape -> tensor<4xindex>
|
// CHECK: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||||
// CHECK: %[[EXTENT_RHS_4:.*]] = shape.to_extent_tensor %[[BROADCASTED_RHS_4]] : !shape.shape -> tensor<4xindex>
|
// CHECK: %[[RESHAPED_RHS_4:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
||||||
// CHECK: %[[RESHAPED_LHS_4:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[EXTENT_LHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESHAPED_RHS_4:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[EXTENT_RHS_4]]) : (tensor<*xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESULT_RANK_4:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_4]], %[[RESHAPED_RHS_4]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
|
// CHECK: %[[RESULT_RANK_4:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_4]], %[[RESHAPED_RHS_4]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
|
||||||
// CHECK: %[[RESULT_4:.*]] = tensor_cast %[[RESULT_RANK_4]] : tensor<?x?x?x?xf32> to tensor<*xf32>
|
// CHECK: %[[RESULT_4:.*]] = tensor_cast %[[RESULT_RANK_4]] : tensor<?x?x?x?xf32> to tensor<*xf32>
|
||||||
// CHECK: scf.yield %[[RESULT_4]] : tensor<*xf32>
|
// CHECK: scf.yield %[[RESULT_4]] : tensor<*xf32>
|
||||||
|
@ -398,12 +392,10 @@ func @addUnrankedUnranked(
|
||||||
// Handle rank 5 specialization
|
// Handle rank 5 specialization
|
||||||
// CHECK: %[[VAL_50:.*]] = scf.if %[[GREATEST_RANK_IS_5]] -> (tensor<*xf32>) {
|
// CHECK: %[[VAL_50:.*]] = scf.if %[[GREATEST_RANK_IS_5]] -> (tensor<*xf32>) {
|
||||||
// CHECK: %[[CONST_SHAPE_5:.*]] = shape.const_shape [1, 1, 1, 1, 1]
|
// CHECK: %[[CONST_SHAPE_5:.*]] = shape.const_shape [1, 1, 1, 1, 1]
|
||||||
// CHECK: %[[BROADCASTED_LHS_5:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_5]]
|
// CHECK: %[[BROADCASTED_LHS_5:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<5xindex>
|
||||||
// CHECK: %[[BROADCASTED_RHS_5:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_5]]
|
// CHECK: %[[BROADCASTED_RHS_5:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_5]] : tensor<?xindex>, tensor<5xindex> -> tensor<5xindex>
|
||||||
// CHECK: %[[EXTENT_LHS_5:.*]] = shape.to_extent_tensor %[[BROADCASTED_LHS_5]] : !shape.shape -> tensor<5xindex>
|
// CHECK: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||||
// CHECK: %[[EXTENT_RHS_5:.*]] = shape.to_extent_tensor %[[BROADCASTED_RHS_5]] : !shape.shape -> tensor<5xindex>
|
// CHECK: %[[RESHAPED_RHS_5:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
||||||
// CHECK: %[[RESHAPED_LHS_5:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[EXTENT_LHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESHAPED_RHS_5:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[EXTENT_RHS_5]]) : (tensor<*xf32>, tensor<5xindex>) -> tensor<?x?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESULT_RANK_5:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_5]], %[[RESHAPED_RHS_5]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
|
// CHECK: %[[RESULT_RANK_5:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_5]], %[[RESHAPED_RHS_5]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>) -> tensor<?x?x?x?x?xf32>
|
||||||
// CHECK: %[[RESULT_5:.*]] = tensor_cast %[[RESULT_RANK_5]] : tensor<?x?x?x?x?xf32> to tensor<*xf32>
|
// CHECK: %[[RESULT_5:.*]] = tensor_cast %[[RESULT_RANK_5]] : tensor<?x?x?x?x?xf32> to tensor<*xf32>
|
||||||
// CHECK: scf.yield %[[RESULT_5]] : tensor<*xf32>
|
// CHECK: scf.yield %[[RESULT_5]] : tensor<*xf32>
|
||||||
|
@ -413,12 +405,10 @@ func @addUnrankedUnranked(
|
||||||
// Handle rank 6 specialization
|
// Handle rank 6 specialization
|
||||||
// CHECK: %[[VAL_58:.*]] = scf.if %[[GREATEST_RANK_IS_6]] -> (tensor<*xf32>) {
|
// CHECK: %[[VAL_58:.*]] = scf.if %[[GREATEST_RANK_IS_6]] -> (tensor<*xf32>) {
|
||||||
// CHECK: %[[CONST_SHAPE_6:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1]
|
// CHECK: %[[CONST_SHAPE_6:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1]
|
||||||
// CHECK: %[[BROADCASTED_LHS_6:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_6]]
|
// CHECK: %[[BROADCASTED_LHS_6:.*]] = shape.broadcast %[[LHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<6xindex>
|
||||||
// CHECK: %[[BROADCASTED_RHS_6:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_6]]
|
// CHECK: %[[BROADCASTED_RHS_6:.*]] = shape.broadcast %[[RHS_SHAPE]], %[[CONST_SHAPE_6]] : tensor<?xindex>, tensor<6xindex> -> tensor<6xindex>
|
||||||
// CHECK: %[[EXTENT_LHS_6:.*]] = shape.to_extent_tensor %[[BROADCASTED_LHS_6]] : !shape.shape -> tensor<6xindex>
|
// CHECK: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[BROADCASTED_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||||
// CHECK: %[[EXTENT_RHS_6:.*]] = shape.to_extent_tensor %[[BROADCASTED_RHS_6]] : !shape.shape -> tensor<6xindex>
|
// CHECK: %[[RESHAPED_RHS_6:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[BROADCASTED_RHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
||||||
// CHECK: %[[RESHAPED_LHS_6:.*]] = "mhlo.dynamic_reshape"(%[[LHS]], %[[EXTENT_LHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESHAPED_RHS_6:.*]] = "mhlo.dynamic_reshape"(%[[RHS]], %[[EXTENT_RHS_6]]) : (tensor<*xf32>, tensor<6xindex>) -> tensor<?x?x?x?x?x?xf32>
|
|
||||||
// CHECK: %[[RESULT_RANK_6:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_6]], %[[RESHAPED_RHS_6]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>) -> tensor<?x?x?x?x?x?xf32>
|
// CHECK: %[[RESULT_RANK_6:.*]] = chlo.broadcast_add %[[RESHAPED_LHS_6]], %[[RESHAPED_RHS_6]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>) -> tensor<?x?x?x?x?x?xf32>
|
||||||
// CHECK: %[[RESULT_6:.*]] = tensor_cast %[[RESULT_RANK_6]] : tensor<?x?x?x?x?x?xf32> to tensor<*xf32>
|
// CHECK: %[[RESULT_6:.*]] = tensor_cast %[[RESULT_RANK_6]] : tensor<?x?x?x?x?x?xf32> to tensor<*xf32>
|
||||||
// CHECK: scf.yield %[[RESULT_6]] : tensor<*xf32>
|
// CHECK: scf.yield %[[RESULT_6]] : tensor<*xf32>
|
||||||
|
|
Loading…
Reference in New Issue