Rename `xla_hlo` dialect to `mhlo`

This is part of the current refactoring of the HLO related dialect.
`xla_hlo` will be reintroduced in a new form later.

PiperOrigin-RevId: 319916753
This commit is contained in:
Mehdi Amini 2020-07-07 04:51:24 +00:00 committed by Mehdi Amini
parent fa057cc0bc
commit 8900222fed
46 changed files with 1163 additions and 1174 deletions

View File

@ -17,12 +17,12 @@ limitations under the License.
// These ops are not necessarily orthogonal or optimized for transformation but // These ops are not necessarily orthogonal or optimized for transformation but
// for ease of expression in certain cases deemed important for client // for ease of expression in certain cases deemed important for client
// libraries (i.e. implicit broadcasting, helper ops, etc). // libraries (i.e. implicit broadcasting, helper ops, etc).
// This dialect is considered to exist in addition to augment the xla_hlo // This dialect is considered to exist in addition to augment the mhlo
// dialect for ergonomic needs, not duplicate/replace it. // dialect for ergonomic needs, not duplicate/replace it.
// //
// The typical use of this dialect is for client libraries to be able to emit // The typical use of this dialect is for client libraries to be able to emit
// less constrained ops and rely on the conversion framework to lower any // less constrained ops and rely on the conversion framework to lower any
// xla_chlo ops to canonical xla_hlo ops. // xla_chlo ops to canonical mhlo ops.
// //
// See: https://www.tensorflow.org/xla/operation_semantics // See: https://www.tensorflow.org/xla/operation_semantics
@ -44,7 +44,7 @@ def HLOClient_Dialect : Dialect {
let description = [{ let description = [{
This dialect contains ops that align closely with the API surface area This dialect contains ops that align closely with the API surface area
of the XlaBuilder C++ API, where such ops have semantics that go beyond of the XlaBuilder C++ API, where such ops have semantics that go beyond
what exists in the lower level dialects (such as `xla_hlo`). Essentially, what exists in the lower level dialects (such as `mhlo`). Essentially,
whenever the client library uses syntactic sugar or composition whenever the client library uses syntactic sugar or composition
of multiple ops for an API call, this dialect tries to model the API call of multiple ops for an API call, this dialect tries to model the API call
and provide conversion patterns to fully materialize into lower level and provide conversion patterns to fully materialize into lower level
@ -65,7 +65,7 @@ class HLOClient_Op<string mnemonic, list<OpTrait> traits> :
// broadcasting (via the broadcast_dimensions attribute) and implicit degenerate // broadcasting (via the broadcast_dimensions attribute) and implicit degenerate
// shape broadcasting. // shape broadcasting.
// //
// These correspond to operations in the xla_hlo dialect without the // These correspond to operations in the mhlo dialect without the
// "broadcast_" prefix, except that those ops require same-shaped operands and // "broadcast_" prefix, except that those ops require same-shaped operands and
// results. // results.
// //

View File

@ -37,12 +37,12 @@ class OpBuilder;
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_structs.h.inc" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_structs.h.inc"
namespace xla_hlo { namespace mhlo {
class XlaHloDialect : public Dialect { class XlaHloDialect : public Dialect {
public: public:
explicit XlaHloDialect(MLIRContext *context); explicit XlaHloDialect(MLIRContext *context);
static StringRef getDialectNamespace() { return "xla_hlo"; } static StringRef getDialectNamespace() { return "mhlo"; }
// Registered hook to materialize a constant operation from a given attribute // Registered hook to materialize a constant operation from a given attribute
// value with the desired resultant type. // value with the desired resultant type.
@ -82,7 +82,7 @@ class TokenType : public Type::TypeBase<TokenType, Type, TypeStorage> {
// %1 = index_cast %0 : index to i64 // %1 = index_cast %0 : index to i64
// %2 = dim %arg0, 1 : memref<?x?xf32> // %2 = dim %arg0, 1 : memref<?x?xf32>
// %3 = index_cast %2 : index to i64 // %3 = index_cast %2 : index to i64
// %4 = "xla_hlo.scalars_to_dimension_tensor"(%1, %3) // %4 = "mhlo.scalars_to_dimension_tensor"(%1, %3)
// : (i64, i64) -> tensor<2xi64> // : (i64, i64) -> tensor<2xi64>
// //
// and returns %4 as the shape value. // and returns %4 as the shape value.
@ -93,7 +93,7 @@ LogicalResult deriveShapeFromFirstOperand(
#define GET_OP_CLASSES #define GET_OP_CLASSES
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h.inc" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h.inc"
} // end namespace xla_hlo } // end namespace mhlo
} // end namespace mlir } // end namespace mlir
#endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_IR_HLO_OPS_H_ #endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_IR_HLO_OPS_H_

View File

@ -29,8 +29,8 @@ include "mlir-hlo/Dialect/mhlo/IR/hlo_utils.td"
include "mlir-hlo/Dialect/mhlo/IR/infer_fusibility_op_interface.td" include "mlir-hlo/Dialect/mhlo/IR/infer_fusibility_op_interface.td"
def HLO_Dialect : Dialect { def HLO_Dialect : Dialect {
let name = "xla_hlo"; let name = "mhlo";
let cppNamespace = "xla_hlo"; let cppNamespace = "mhlo";
} }
class HLO_Op<string mnemonic, list<OpTrait> traits> : class HLO_Op<string mnemonic, list<OpTrait> traits> :

View File

@ -22,7 +22,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
template <typename HloOpTy> template <typename HloOpTy>
struct HloToLhloOpImpl { struct HloToLhloOpImpl {
@ -33,7 +33,7 @@ using HloToLhloOp = typename HloToLhloOpImpl<HloOpTy>::Type;
#define MAP_HLO_TO_LHLO(OpName) \ #define MAP_HLO_TO_LHLO(OpName) \
template <> \ template <> \
struct HloToLhloOpImpl<xla_hlo::OpName> { \ struct HloToLhloOpImpl<mhlo::OpName> { \
using Type = xla_lhlo::OpName; \ using Type = xla_lhlo::OpName; \
} }
@ -74,7 +74,7 @@ MAP_HLO_TO_LHLO(TanhOp);
#undef MAP_HLO_TO_LHLO #undef MAP_HLO_TO_LHLO
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir
#endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_TRANSFORMS_MAP_HLO_TO_LHLO_OP_H_ #endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_DIALECT_MHLO_TRANSFORMS_MAP_HLO_TO_LHLO_OP_H_

View File

@ -464,7 +464,7 @@ struct XlaOpToStdScalarOp {
template <typename XlaOpTy, typename LhloOpTy = XlaOpTy, template <typename XlaOpTy, typename LhloOpTy = XlaOpTy,
typename = std::enable_if_t< typename = std::enable_if_t<
!std::is_same<LhloOpTy, xla_lhlo::CompareOp>::value && !std::is_same<LhloOpTy, xla_lhlo::CompareOp>::value &&
std::is_same<typename xla_hlo::HloToLhloOp<LhloOpTy>, std::is_same<typename mhlo::HloToLhloOp<LhloOpTy>,
std::false_type>::value>> std::false_type>::value>>
static Value map(XlaOpTy op, ArrayRef<Type> result_types, static Value map(XlaOpTy op, ArrayRef<Type> result_types,
ArrayRef<Value> args, OpBuilder* b, unsigned i = 0) { ArrayRef<Value> args, OpBuilder* b, unsigned i = 0) {
@ -472,8 +472,8 @@ struct XlaOpToStdScalarOp {
args, b); args, b);
} }
// Implementation for HLO ops except xla_hlo::CompareOp. // Implementation for HLO ops except mhlo::CompareOp.
template <typename XlaOpTy, typename LhloOpTy = xla_hlo::HloToLhloOp<XlaOpTy>, template <typename XlaOpTy, typename LhloOpTy = mhlo::HloToLhloOp<XlaOpTy>,
typename = std::enable_if_t< typename = std::enable_if_t<
!std::is_same<LhloOpTy, xla_lhlo::CompareOp>::value && !std::is_same<LhloOpTy, xla_lhlo::CompareOp>::value &&
!std::is_same<LhloOpTy, std::false_type>::value>> !std::is_same<LhloOpTy, std::false_type>::value>>
@ -493,10 +493,11 @@ struct XlaOpToStdScalarOp {
op.getLoc(), comparison_direction, result_types, args, b); op.getLoc(), comparison_direction, result_types, args, b);
} }
// Implementation for xla_hlo::CompareOp. // Implementation for mhlo::CompareOp.
template <typename HloOpTy, typename = std::enable_if_t<std::is_same< template <typename HloOpTy,
HloOpTy, xla_hlo::CompareOp>::value>> typename =
static Value map(xla_hlo::CompareOp op, ArrayRef<Type> result_types, std::enable_if_t<std::is_same<HloOpTy, mhlo::CompareOp>::value>>
static Value map(mhlo::CompareOp op, ArrayRef<Type> result_types,
ArrayRef<Value> args, OpBuilder* b) { ArrayRef<Value> args, OpBuilder* b) {
auto comparison_direction = op.comparison_direction(); auto comparison_direction = op.comparison_direction();
return impl::MapXlaCompareOpToStdScalarOp<xla_lhlo::CompareOp>( return impl::MapXlaCompareOpToStdScalarOp<xla_lhlo::CompareOp>(

View File

@ -29,7 +29,7 @@ template <typename T>
class OperationPass; class OperationPass;
class Pass; class Pass;
namespace xla_hlo { namespace mhlo {
/// Lowers HLO control flow ops to the Standard dialect. /// Lowers HLO control flow ops to the Standard dialect.
std::unique_ptr<OperationPass<FuncOp>> createLegalizeControlFlowPass(); std::unique_ptr<OperationPass<FuncOp>> createLegalizeControlFlowPass();
@ -55,10 +55,10 @@ std::unique_ptr<OperationPass<FuncOp>> createTransformUnrankedHloPass();
// necessary to export to XLA. // necessary to export to XLA.
std::unique_ptr<OperationPass<FuncOp>> createSinkConstantsToControlFlowPass(); std::unique_ptr<OperationPass<FuncOp>> createSinkConstantsToControlFlowPass();
// fuse xla_hlo ops to kLoop/kInput fusion patterns // fuse mhlo ops to kLoop/kInput fusion patterns
std::unique_ptr<OperationPass<FuncOp>> createXlaHloFusionPass(); std::unique_ptr<OperationPass<FuncOp>> createXlaHloFusionPass();
} // namespace xla_hlo } // namespace mhlo
namespace xla_lhlo { namespace xla_lhlo {

View File

@ -27,7 +27,7 @@ class LLVMTypeConverter;
class LowerToLLVMOptions; class LowerToLLVMOptions;
class OwningRewritePatternList; class OwningRewritePatternList;
class BufferAssignmentPlacer; class BufferAssignmentPlacer;
namespace xla_hlo { namespace mhlo {
// Collection of rewrite patterns for lowering a general dot product. // Collection of rewrite patterns for lowering a general dot product.
void PopulateGeneralDotOpLoweringPatterns(OwningRewritePatternList *patterns, void PopulateGeneralDotOpLoweringPatterns(OwningRewritePatternList *patterns,
@ -73,7 +73,7 @@ void PopulateTransformUnrankedHloPatterns(MLIRContext *context,
void PopulateUnfuseBatchNormPatterns(MLIRContext *context, void PopulateUnfuseBatchNormPatterns(MLIRContext *context,
OwningRewritePatternList *patterns); OwningRewritePatternList *patterns);
} // namespace xla_hlo } // namespace mhlo
namespace xla_lhlo { namespace xla_lhlo {

View File

@ -18,7 +18,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/lhlo_ops.h"
// Static initialization for XLA dialect registration. // Static initialization for XLA dialect registration.
static mlir::DialectRegistration<mlir::xla_hlo::XlaHloDialect> xla_hlo_ops; static mlir::DialectRegistration<mlir::mhlo::XlaHloDialect> mhlo_ops;
static mlir::DialectRegistration<mlir::xla_chlo::XlaHloClientDialect> static mlir::DialectRegistration<mlir::xla_chlo::XlaHloClientDialect>
xla_chlo_ops; xla_chlo_ops;
static mlir::DialectRegistration<mlir::xla_lhlo::XlaLhloDialect> xla_lhlo_ops; static mlir::DialectRegistration<mlir::xla_lhlo::XlaLhloDialect> xla_lhlo_ops;

View File

@ -60,7 +60,7 @@ limitations under the License.
namespace mlir { namespace mlir {
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_structs.cc.inc" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_structs.cc.inc"
namespace xla_hlo { namespace mhlo {
Operation* XlaHloDialect::materializeConstant(OpBuilder& builder, Operation* XlaHloDialect::materializeConstant(OpBuilder& builder,
Attribute value, Type type, Attribute value, Type type,
@ -68,8 +68,7 @@ Operation* XlaHloDialect::materializeConstant(OpBuilder& builder,
// HLO dialect constants only support ElementsAttr unlike standard dialect // HLO dialect constants only support ElementsAttr unlike standard dialect
// constant which supports all attributes. // constant which supports all attributes.
if (value.isa<ElementsAttr>()) if (value.isa<ElementsAttr>())
return builder.create<xla_hlo::ConstOp>(loc, type, return builder.create<mhlo::ConstOp>(loc, type, value.cast<ElementsAttr>());
value.cast<ElementsAttr>());
return nullptr; return nullptr;
} }
@ -167,7 +166,7 @@ void ConstOp::build(OpBuilder& builder, OperationState& result,
} }
// TODO: support other XLA specific types. // TODO: support other XLA specific types.
assert(type && "unsupported attribute type for building xla_hlo.constant"); assert(type && "unsupported attribute type for building mhlo.constant");
result.types.push_back(type); result.types.push_back(type);
result.addAttribute("value", value); result.addAttribute("value", value);
} }
@ -387,7 +386,7 @@ static LogicalResult Verify(GetTupleElementOp op) {
OpFoldResult GetTupleElementOp::fold(ArrayRef<Attribute> operands) { OpFoldResult GetTupleElementOp::fold(ArrayRef<Attribute> operands) {
if (auto tupleOp = if (auto tupleOp =
dyn_cast_or_null<xla_hlo::TupleOp>(getOperand().getDefiningOp())) { dyn_cast_or_null<mhlo::TupleOp>(getOperand().getDefiningOp())) {
return tupleOp.getOperand(index().getLimitedValue()); return tupleOp.getOperand(index().getLimitedValue());
} }
@ -693,10 +692,8 @@ void ComplexOp::build(OpBuilder& builder, OperationState& state, Value lhs,
} }
OpFoldResult ComplexOp::fold(ArrayRef<Attribute> operands) { OpFoldResult ComplexOp::fold(ArrayRef<Attribute> operands) {
auto real_op = auto real_op = dyn_cast_or_null<mhlo::RealOp>(getOperand(0).getDefiningOp());
dyn_cast_or_null<xla_hlo::RealOp>(getOperand(0).getDefiningOp()); auto imag_op = dyn_cast_or_null<mhlo::ImagOp>(getOperand(1).getDefiningOp());
auto imag_op =
dyn_cast_or_null<xla_hlo::ImagOp>(getOperand(1).getDefiningOp());
if (real_op && imag_op && real_op.getOperand() == imag_op.getOperand()) { if (real_op && imag_op && real_op.getOperand() == imag_op.getOperand()) {
return real_op.getOperand(); return real_op.getOperand();
} }
@ -727,7 +724,7 @@ void ImagOp::build(OpBuilder& builder, OperationState& state, Value val) {
OpFoldResult ImagOp::fold(ArrayRef<Attribute> operands) { OpFoldResult ImagOp::fold(ArrayRef<Attribute> operands) {
if (auto complex_op = if (auto complex_op =
dyn_cast_or_null<xla_hlo::ComplexOp>(getOperand().getDefiningOp())) { dyn_cast_or_null<mhlo::ComplexOp>(getOperand().getDefiningOp())) {
return complex_op.getOperand(1); return complex_op.getOperand(1);
} }
@ -740,7 +737,7 @@ void RealOp::build(OpBuilder& builder, OperationState& state, Value val) {
OpFoldResult RealOp::fold(ArrayRef<Attribute> operands) { OpFoldResult RealOp::fold(ArrayRef<Attribute> operands) {
if (auto complex_op = if (auto complex_op =
dyn_cast_or_null<xla_hlo::ComplexOp>(getOperand().getDefiningOp())) { dyn_cast_or_null<mhlo::ComplexOp>(getOperand().getDefiningOp())) {
return complex_op.getOperand(0); return complex_op.getOperand(0);
} }
@ -1148,7 +1145,7 @@ static LogicalResult Verify(MapOp op) {
// RecvOp // RecvOp
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// Checks that the result type is of the form `tuple<any_type, xla_hlo::token>` // Checks that the result type is of the form `tuple<any_type, mhlo::token>`
static LogicalResult Verify(RecvOp op) { static LogicalResult Verify(RecvOp op) {
auto result_ty = op.getResult().getType().cast<TupleType>(); auto result_ty = op.getResult().getType().cast<TupleType>();
auto subtypes = result_ty.getTypes(); auto subtypes = result_ty.getTypes();
@ -2020,7 +2017,7 @@ void CompareOp::build(OpBuilder& builder, OperationState& result, Value lhs,
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.cc.inc" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.cc.inc"
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// xla_hlo Dialect Interfaces // mhlo Dialect Interfaces
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
namespace { namespace {
@ -2032,7 +2029,7 @@ struct HLOInlinerInterface : public DialectInlinerInterface {
BlockAndValueMapping& valueMapping) const final { BlockAndValueMapping& valueMapping) const final {
return true; return true;
} }
// Operations in xla_hlo dialect are always legal to inline since they are // Operations in mhlo dialect are always legal to inline since they are
// pure. // pure.
bool isLegalToInline(Operation*, Region*, BlockAndValueMapping&) const final { bool isLegalToInline(Operation*, Region*, BlockAndValueMapping&) const final {
return true; return true;
@ -2041,7 +2038,7 @@ struct HLOInlinerInterface : public DialectInlinerInterface {
} // end anonymous namespace } // end anonymous namespace
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// xla_hlo Dialect Constructor // mhlo Dialect Constructor
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
XlaHloDialect::XlaHloDialect(MLIRContext* context) XlaHloDialect::XlaHloDialect(MLIRContext* context)
@ -2061,8 +2058,7 @@ Type XlaHloDialect::parseType(DialectAsmParser& parser) const {
if (parser.parseKeyword(&data_type)) return Type(); if (parser.parseKeyword(&data_type)) return Type();
if (data_type == "token") return TokenType::get(getContext()); if (data_type == "token") return TokenType::get(getContext());
parser.emitError(parser.getNameLoc()) parser.emitError(parser.getNameLoc()) << "unknown mhlo type: " << data_type;
<< "unknown xla_hlo type: " << data_type;
return nullptr; return nullptr;
} }
@ -2071,7 +2067,7 @@ void XlaHloDialect::printType(Type type, DialectAsmPrinter& os) const {
os << "token"; os << "token";
return; return;
} }
os << "<unknown xla_hlo type>"; os << "<unknown mhlo type>";
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
@ -2106,5 +2102,5 @@ LogicalResult deriveShapeFromFirstOperand(
return success(); return success();
} }
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -30,7 +30,7 @@ namespace xla_chlo {
namespace { namespace {
// Converts binary ops that statically are determined to not broadcast directly // Converts binary ops that statically are determined to not broadcast directly
// to the corresponding xla_hlo non-broadcasting op. // to the corresponding mhlo non-broadcasting op.
template <typename ChloOpTy, typename HloOpTy, typename Adaptor> template <typename ChloOpTy, typename HloOpTy, typename Adaptor>
struct ConvertTrivialNonBroadcastBinaryOp : public OpRewritePattern<ChloOpTy> { struct ConvertTrivialNonBroadcastBinaryOp : public OpRewritePattern<ChloOpTy> {
using OpRewritePattern<ChloOpTy>::OpRewritePattern; using OpRewritePattern<ChloOpTy>::OpRewritePattern;
@ -63,7 +63,7 @@ struct ConvertTrivialNonBroadcastBinaryOp : public OpRewritePattern<ChloOpTy> {
}; };
// Converts a binary op with ranked broadcasting operands to explicitly // Converts a binary op with ranked broadcasting operands to explicitly
// broadcast and invoke the corresponding xla_hlo non-broadcasting op. // broadcast and invoke the corresponding mhlo non-broadcasting op.
// Note that dynamic broadcasting supported by this pattern is only valid for // Note that dynamic broadcasting supported by this pattern is only valid for
// "numpy" broadcasting semantics as defined here: // "numpy" broadcasting semantics as defined here:
// https://docs.scipy.org/doc/numpy/reference/ufuncs.html // https://docs.scipy.org/doc/numpy/reference/ufuncs.html
@ -136,7 +136,7 @@ struct ConvertRankedDynamicBroadcastBinaryOp
// properly. // properly.
auto lhs_broadcast_dimensions = llvm::to_vector<4>( auto lhs_broadcast_dimensions = llvm::to_vector<4>(
llvm::seq<int64_t>(result_rank - lhs_type.getRank(), result_rank)); llvm::seq<int64_t>(result_rank - lhs_type.getRank(), result_rank));
Value broadcasted_lhs = rewriter.create<xla_hlo::DynamicBroadcastInDimOp>( Value broadcasted_lhs = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
loc, loc,
RankedTensorType::get(result_type.getShape(), RankedTensorType::get(result_type.getShape(),
lhs_type.getElementType()), lhs_type.getElementType()),
@ -144,7 +144,7 @@ struct ConvertRankedDynamicBroadcastBinaryOp
rewriter.getI64TensorAttr(lhs_broadcast_dimensions)); rewriter.getI64TensorAttr(lhs_broadcast_dimensions));
auto rhs_broadcast_dimensions = llvm::to_vector<4>( auto rhs_broadcast_dimensions = llvm::to_vector<4>(
llvm::seq<int64_t>(result_rank - rhs_type.getRank(), result_rank)); llvm::seq<int64_t>(result_rank - rhs_type.getRank(), result_rank));
Value broadcasted_rhs = rewriter.create<xla_hlo::DynamicBroadcastInDimOp>( Value broadcasted_rhs = rewriter.create<mhlo::DynamicBroadcastInDimOp>(
loc, loc,
RankedTensorType::get(result_type.getShape(), RankedTensorType::get(result_type.getShape(),
rhs_type.getElementType()), rhs_type.getElementType()),
@ -182,21 +182,19 @@ struct HloBinaryElementwiseAdaptor {
}; };
struct HloComplexAdaptor { struct HloComplexAdaptor {
static xla_hlo::ComplexOp CreateOp(BroadcastComplexOp from_op, static mhlo::ComplexOp CreateOp(BroadcastComplexOp from_op, Type result_type,
Type result_type, Value broadcasted_lhs, Value broadcasted_lhs, Value broadcasted_rhs,
Value broadcasted_rhs,
OpBuilder &builder) { OpBuilder &builder) {
return builder.create<xla_hlo::ComplexOp>(from_op.getLoc(), result_type, return builder.create<mhlo::ComplexOp>(from_op.getLoc(), result_type,
broadcasted_lhs, broadcasted_rhs); broadcasted_lhs, broadcasted_rhs);
} }
}; };
struct HloCompareAdaptor { struct HloCompareAdaptor {
static xla_hlo::CompareOp CreateOp(BroadcastCompareOp from_op, static mhlo::CompareOp CreateOp(BroadcastCompareOp from_op, Type result_type,
Type result_type, Value broadcasted_lhs, Value broadcasted_lhs, Value broadcasted_rhs,
Value broadcasted_rhs,
OpBuilder &builder) { OpBuilder &builder) {
return builder.create<xla_hlo::CompareOp>(from_op.getLoc(), result_type, return builder.create<mhlo::CompareOp>(from_op.getLoc(), result_type,
broadcasted_lhs, broadcasted_rhs, broadcasted_lhs, broadcasted_rhs,
from_op.comparison_direction()); from_op.comparison_direction());
} }
@ -214,28 +212,27 @@ void PopulateLegalizeChloToHloPatterns(MLIRContext *context,
HloBinaryElementwiseAdaptor<ChloOp, HloOp>>(context, \ HloBinaryElementwiseAdaptor<ChloOp, HloOp>>(context, \
patterns); patterns);
POPULATE_BCAST(BroadcastAddOp, xla_hlo::AddOp); POPULATE_BCAST(BroadcastAddOp, mhlo::AddOp);
POPULATE_BCAST(BroadcastAndOp, xla_hlo::AndOp); POPULATE_BCAST(BroadcastAndOp, mhlo::AndOp);
POPULATE_BCAST(BroadcastAtan2Op, xla_hlo::Atan2Op); POPULATE_BCAST(BroadcastAtan2Op, mhlo::Atan2Op);
POPULATE_BCAST(BroadcastDivOp, xla_hlo::DivOp); POPULATE_BCAST(BroadcastDivOp, mhlo::DivOp);
POPULATE_BCAST(BroadcastMaxOp, xla_hlo::MaxOp); POPULATE_BCAST(BroadcastMaxOp, mhlo::MaxOp);
POPULATE_BCAST(BroadcastMinOp, xla_hlo::MinOp); POPULATE_BCAST(BroadcastMinOp, mhlo::MinOp);
POPULATE_BCAST(BroadcastMulOp, xla_hlo::MulOp); POPULATE_BCAST(BroadcastMulOp, mhlo::MulOp);
POPULATE_BCAST(BroadcastOrOp, xla_hlo::OrOp); POPULATE_BCAST(BroadcastOrOp, mhlo::OrOp);
POPULATE_BCAST(BroadcastPowOp, xla_hlo::PowOp); POPULATE_BCAST(BroadcastPowOp, mhlo::PowOp);
POPULATE_BCAST(BroadcastRemOp, xla_hlo::RemOp); POPULATE_BCAST(BroadcastRemOp, mhlo::RemOp);
POPULATE_BCAST(BroadcastShiftLeftOp, xla_hlo::ShiftLeftOp); POPULATE_BCAST(BroadcastShiftLeftOp, mhlo::ShiftLeftOp);
POPULATE_BCAST(BroadcastShiftRightArithmeticOp, POPULATE_BCAST(BroadcastShiftRightArithmeticOp, mhlo::ShiftRightArithmeticOp);
xla_hlo::ShiftRightArithmeticOp); POPULATE_BCAST(BroadcastShiftRightLogicalOp, mhlo::ShiftRightLogicalOp);
POPULATE_BCAST(BroadcastShiftRightLogicalOp, xla_hlo::ShiftRightLogicalOp); POPULATE_BCAST(BroadcastSubOp, mhlo::SubOp);
POPULATE_BCAST(BroadcastSubOp, xla_hlo::SubOp); POPULATE_BCAST(BroadcastXorOp, mhlo::XorOp);
POPULATE_BCAST(BroadcastXorOp, xla_hlo::XorOp);
// Broadcasting ops requiring special construction. // Broadcasting ops requiring special construction.
PopulateForBinaryOp<BroadcastComplexOp, xla_hlo::ComplexOp, PopulateForBinaryOp<BroadcastComplexOp, mhlo::ComplexOp, HloComplexAdaptor>(
HloComplexAdaptor>(context, patterns); context, patterns);
PopulateForBinaryOp<BroadcastCompareOp, xla_hlo::CompareOp, PopulateForBinaryOp<BroadcastCompareOp, mhlo::CompareOp, HloCompareAdaptor>(
HloCompareAdaptor>(context, patterns); context, patterns);
} }
} // namespace xla_chlo } // namespace xla_chlo

View File

@ -32,8 +32,8 @@ struct TestChloLegalizeToHloPass
OwningRewritePatternList conversionPatterns; OwningRewritePatternList conversionPatterns;
conversionTarget.addIllegalDialect<XlaHloClientDialect>(); conversionTarget.addIllegalDialect<XlaHloClientDialect>();
// Consider the xla_hlo dialect legal for tests. // Consider the mhlo dialect legal for tests.
conversionTarget.addLegalDialect<xla_hlo::XlaHloDialect>(); conversionTarget.addLegalDialect<mhlo::XlaHloDialect>();
// The conversion uses helpers from the Standard dialect. // The conversion uses helpers from the Standard dialect.
conversionTarget.addLegalDialect<mlir::StandardOpsDialect>(); conversionTarget.addLegalDialect<mlir::StandardOpsDialect>();
conversionTarget.addLegalDialect<mlir::shape::ShapeDialect>(); conversionTarget.addLegalDialect<mlir::shape::ShapeDialect>();

View File

@ -37,7 +37,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
template <typename T> template <typename T>
@ -128,7 +128,7 @@ class HloToLhloOpConverter : public BaseOpConversion<HloOpTy> {
op->getLoc(), result.value(), results_shape.front(), &rewriter)); op->getLoc(), result.value(), results_shape.front(), &rewriter));
} }
} }
rewriter.create<xla_hlo::HloToLhloOp<HloOpTy>>(op->getLoc(), llvm::None, rewriter.create<mhlo::HloToLhloOp<HloOpTy>>(op->getLoc(), llvm::None,
buffer_args, op->getAttrs()); buffer_args, op->getAttrs());
rewriter.replaceOp(op, ArrayRef<Value>(buffer_args).slice(operands.size())); rewriter.replaceOp(op, ArrayRef<Value>(buffer_args).slice(operands.size()));
return success(); return success();
@ -136,12 +136,12 @@ class HloToLhloOpConverter : public BaseOpConversion<HloOpTy> {
}; };
struct HloToLhloDynamicBroadcastInDimOpConverter struct HloToLhloDynamicBroadcastInDimOpConverter
: public BaseOpConversion<xla_hlo::DynamicBroadcastInDimOp> { : public BaseOpConversion<mhlo::DynamicBroadcastInDimOp> {
public: public:
using BaseOpConversion<xla_hlo::DynamicBroadcastInDimOp>::BaseOpConversion; using BaseOpConversion<mhlo::DynamicBroadcastInDimOp>::BaseOpConversion;
LogicalResult matchAndRewrite( LogicalResult matchAndRewrite(
xla_hlo::DynamicBroadcastInDimOp op, ArrayRef<Value> operands, mhlo::DynamicBroadcastInDimOp op, ArrayRef<Value> operands,
ConversionPatternRewriter& rewriter) const final { ConversionPatternRewriter& rewriter) const final {
auto loc = op.getLoc(); auto loc = op.getLoc();
Value resultBuffer = InsertDynamicAllocAndDealloc( Value resultBuffer = InsertDynamicAllocAndDealloc(
@ -162,7 +162,7 @@ struct HloToLhloDynamicBroadcastInDimOpConverter
// and size of the target dimension if size-1 dimension expansion is // and size of the target dimension if size-1 dimension expansion is
// necessary. // necessary.
xla_lhlo::DynamicMemRefCastOp InsertDynamicMemrefCastOp( xla_lhlo::DynamicMemRefCastOp InsertDynamicMemrefCastOp(
xla_hlo::DynamicBroadcastInDimOp op, Value operand, OpBuilder* b) const { mhlo::DynamicBroadcastInDimOp op, Value operand, OpBuilder* b) const {
auto loc = op.getLoc(); auto loc = op.getLoc();
auto operand_type = operand.getType().cast<MemRefType>(); auto operand_type = operand.getType().cast<MemRefType>();
auto operand_shape = operand_type.getShape(); auto operand_shape = operand_type.getShape();
@ -220,12 +220,12 @@ struct HloToLhloDynamicBroadcastInDimOpConverter
} }
}; };
struct HloToLhloReduceOpConverter : public BaseOpConversion<xla_hlo::ReduceOp> { struct HloToLhloReduceOpConverter : public BaseOpConversion<mhlo::ReduceOp> {
public: public:
using BaseOpConversion<xla_hlo::ReduceOp>::BaseOpConversion; using BaseOpConversion<mhlo::ReduceOp>::BaseOpConversion;
LogicalResult matchAndRewrite( LogicalResult matchAndRewrite(
xla_hlo::ReduceOp op, ArrayRef<Value> operands, mhlo::ReduceOp op, ArrayRef<Value> operands,
ConversionPatternRewriter& rewriter) const final { ConversionPatternRewriter& rewriter) const final {
auto loc = op.getLoc(); auto loc = op.getLoc();
// TODO(b/137624192) Implement variadic reduce. // TODO(b/137624192) Implement variadic reduce.
@ -314,10 +314,10 @@ class HloToLhloTensorStoreOpConverter
// "xla_lhlo.fusion"() ({ // "xla_lhlo.fusion"() ({
// %0 = tensor_load %arg1 : memref<2x2xf32> // %0 = tensor_load %arg1 : memref<2x2xf32>
// %1 = tensor_load %arg2 : memref<2x2xf32> // %1 = tensor_load %arg2 : memref<2x2xf32>
// %2 = "xla_hlo.add"(%0, %1) : // %2 = "mhlo.add"(%0, %1) :
// (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// %3 = tensor_load %arg0 : memref<2x2xf32> // %3 = tensor_load %arg0 : memref<2x2xf32>
// %4 = "xla_hlo.multiply"(%2, %3) : // %4 = "mhlo.multiply"(%2, %3) :
// (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// tensor_store %4, %arg3 : memref<2x2xf32> // tensor_store %4, %arg3 : memref<2x2xf32>
// "xla_lhlo.terminator"() : () -> () // "xla_lhlo.terminator"() : () -> ()
@ -344,8 +344,8 @@ class HloToLhloTensorStoreOpConverter
// FuncOp signature conversion example: // FuncOp signature conversion example:
// //
// func @func_op(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { // func @func_op(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// %0 = "xla_hlo.maximum"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> // %0 = "mhlo.maximum"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) ->
// tensor<4xf32> %1 = "xla_hlo.add"(%arg0, %0) : (tensor<4xf32>, // tensor<4xf32> %1 = "mhlo.add"(%arg0, %0) : (tensor<4xf32>,
// tensor<4xf32>) -> tensor<4xf32> return %1 : tensor<4xf32> // tensor<4xf32>) -> tensor<4xf32> return %1 : tensor<4xf32>
// } // }
// //
@ -388,7 +388,7 @@ struct HloLegalizeToLhlo
target.addIllegalOp<mlir::TensorStoreOp>(); target.addIllegalOp<mlir::TensorStoreOp>();
target.addLegalOp<ModuleTerminatorOp>(); target.addLegalOp<ModuleTerminatorOp>();
target.addLegalOp<TensorFromElementsOp>(); target.addLegalOp<TensorFromElementsOp>();
target.addIllegalDialect<xla_hlo::XlaHloDialect>(); target.addIllegalDialect<mhlo::XlaHloDialect>();
BufferAssignmentTypeConverter converter; BufferAssignmentTypeConverter converter;
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
@ -442,38 +442,38 @@ void populateHLOToLHLOConversionPattern(
// clang-format off // clang-format off
patterns->insert< patterns->insert<
HloToLhloDynamicBroadcastInDimOpConverter, HloToLhloDynamicBroadcastInDimOpConverter,
HloToLhloOpConverter<xla_hlo::AbsOp>, HloToLhloOpConverter<mhlo::AbsOp>,
HloToLhloOpConverter<xla_hlo::AddOp>, HloToLhloOpConverter<mhlo::AddOp>,
HloToLhloOpConverter<xla_hlo::AndOp>, HloToLhloOpConverter<mhlo::AndOp>,
HloToLhloOpConverter<xla_hlo::BroadcastInDimOp>, HloToLhloOpConverter<mhlo::BroadcastInDimOp>,
HloToLhloOpConverter<xla_hlo::CeilOp>, HloToLhloOpConverter<mhlo::CeilOp>,
HloToLhloOpConverter<xla_hlo::CompareOp>, HloToLhloOpConverter<mhlo::CompareOp>,
HloToLhloOpConverter<xla_hlo::ComplexOp>, HloToLhloOpConverter<mhlo::ComplexOp>,
HloToLhloOpConverter<xla_hlo::ConstOp>, HloToLhloOpConverter<mhlo::ConstOp>,
HloToLhloOpConverter<xla_hlo::ConvOp>, HloToLhloOpConverter<mhlo::ConvOp>,
HloToLhloOpConverter<xla_hlo::ConvertOp>, HloToLhloOpConverter<mhlo::ConvertOp>,
HloToLhloOpConverter<xla_hlo::CopyOp>, HloToLhloOpConverter<mhlo::CopyOp>,
HloToLhloOpConverter<xla_hlo::CosOp>, HloToLhloOpConverter<mhlo::CosOp>,
HloToLhloOpConverter<xla_hlo::DivOp>, HloToLhloOpConverter<mhlo::DivOp>,
HloToLhloOpConverter<xla_hlo::DotOp>, HloToLhloOpConverter<mhlo::DotOp>,
HloToLhloOpConverter<xla_hlo::ExpOp>, HloToLhloOpConverter<mhlo::ExpOp>,
HloToLhloOpConverter<xla_hlo::GatherOp>, HloToLhloOpConverter<mhlo::GatherOp>,
HloToLhloOpConverter<xla_hlo::ImagOp>, HloToLhloOpConverter<mhlo::ImagOp>,
HloToLhloOpConverter<xla_hlo::IotaOp>, HloToLhloOpConverter<mhlo::IotaOp>,
HloToLhloOpConverter<xla_hlo::LogOp>, HloToLhloOpConverter<mhlo::LogOp>,
HloToLhloOpConverter<xla_hlo::MaxOp>, HloToLhloOpConverter<mhlo::MaxOp>,
HloToLhloOpConverter<xla_hlo::MinOp>, HloToLhloOpConverter<mhlo::MinOp>,
HloToLhloOpConverter<xla_hlo::MulOp>, HloToLhloOpConverter<mhlo::MulOp>,
HloToLhloOpConverter<xla_hlo::NegOp>, HloToLhloOpConverter<mhlo::NegOp>,
HloToLhloOpConverter<xla_hlo::RealOp>, HloToLhloOpConverter<mhlo::RealOp>,
HloToLhloOpConverter<xla_hlo::RemOp>, HloToLhloOpConverter<mhlo::RemOp>,
HloToLhloOpConverter<xla_hlo::RsqrtOp>, HloToLhloOpConverter<mhlo::RsqrtOp>,
HloToLhloOpConverter<xla_hlo::ReshapeOp>, HloToLhloOpConverter<mhlo::ReshapeOp>,
HloToLhloOpConverter<xla_hlo::SelectOp>, HloToLhloOpConverter<mhlo::SelectOp>,
HloToLhloOpConverter<xla_hlo::SignOp>, HloToLhloOpConverter<mhlo::SignOp>,
HloToLhloOpConverter<xla_hlo::SqrtOp>, HloToLhloOpConverter<mhlo::SqrtOp>,
HloToLhloOpConverter<xla_hlo::SubOp>, HloToLhloOpConverter<mhlo::SubOp>,
HloToLhloOpConverter<xla_hlo::TanhOp>, HloToLhloOpConverter<mhlo::TanhOp>,
HloToLhloReduceOpConverter, HloToLhloReduceOpConverter,
HloToLhloTensorLoadOpConverter, HloToLhloTensorLoadOpConverter,
HloToLhloTensorStoreOpConverter HloToLhloTensorStoreOpConverter
@ -489,5 +489,5 @@ std::unique_ptr<OperationPass<ModuleOp>> createLegalizeToLhloPass(
static PassRegistration<HloLegalizeToLhlo> legalize_pass( static PassRegistration<HloLegalizeToLhlo> legalize_pass(
"hlo-legalize-to-lhlo", "Legalize from HLO dialect to LHLO dialect"); "hlo-legalize-to-lhlo", "Legalize from HLO dialect to LHLO dialect");
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -35,7 +35,7 @@ limitations under the License.
using mlir::PassRegistration; using mlir::PassRegistration;
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
struct LegalizeControlFlow struct LegalizeControlFlow
: public mlir::PassWrapper<LegalizeControlFlow, FunctionPass> { : public mlir::PassWrapper<LegalizeControlFlow, FunctionPass> {
@ -51,7 +51,7 @@ LogicalResult ReplaceTerminators(Region* region, Block* target_block,
OpBuilder* builder) { OpBuilder* builder) {
for (auto& old_block : region->getBlocks()) { for (auto& old_block : region->getBlocks()) {
Block* block = mapper.lookup(&old_block); Block* block = mapper.lookup(&old_block);
auto return_op = dyn_cast<xla_hlo::ReturnOp>(block->getTerminator()); auto return_op = dyn_cast<mhlo::ReturnOp>(block->getTerminator());
if (!return_op) continue; if (!return_op) continue;
builder->setInsertionPointToEnd(block); builder->setInsertionPointToEnd(block);
builder->create<mlir::BranchOp>(loc, target_block, return_op.getOperands()); builder->create<mlir::BranchOp>(loc, target_block, return_op.getOperands());
@ -61,7 +61,7 @@ LogicalResult ReplaceTerminators(Region* region, Block* target_block,
return success(); return success();
} }
LogicalResult LowerIfOp(mlir::xla_hlo::IfOp if_op) { LogicalResult LowerIfOp(mlir::mhlo::IfOp if_op) {
Operation* op_inst = if_op.getOperation(); Operation* op_inst = if_op.getOperation();
mlir::OpBuilder builder(if_op); mlir::OpBuilder builder(if_op);
auto orig_block = op_inst->getBlock(); auto orig_block = op_inst->getBlock();
@ -106,13 +106,13 @@ LogicalResult LowerIfOp(mlir::xla_hlo::IfOp if_op) {
return success(); return success();
} }
LogicalResult LowerWhileOp(mlir::xla_hlo::WhileOp while_op) { LogicalResult LowerWhileOp(mlir::mhlo::WhileOp while_op) {
// Converts an XLA while loop into control flow. This generates a set of MLIR // Converts an XLA while loop into control flow. This generates a set of MLIR
// blocks and branches, along with inlining the regions provided by the XLA // blocks and branches, along with inlining the regions provided by the XLA
// while loop. The structure should be similar to below: // while loop. The structure should be similar to below:
// //
// <prior operations> // <prior operations>
// %0 = "xla_hlo.while"(%arg0) {^cond(...){...}, ^body(...){...}} // %0 = "mhlo.while"(%arg0) {^cond(...){...}, ^body(...){...}}
// <post operations> // <post operations>
auto* op_inst = while_op.getOperation(); auto* op_inst = while_op.getOperation();
mlir::OpBuilder builder(while_op); mlir::OpBuilder builder(while_op);
@ -147,7 +147,7 @@ LogicalResult LowerWhileOp(mlir::xla_hlo::WhileOp while_op) {
// extract_element and conditional branch. This changes the block below: // extract_element and conditional branch. This changes the block below:
// ^cond(%0): // ^cond(%0):
// <inlined conditional region> // <inlined conditional region>
// "xla_hlo".return(%1) // "mhlo".return(%1)
// //
// Into: // Into:
// ^cond(%0): // ^cond(%0):
@ -156,14 +156,14 @@ LogicalResult LowerWhileOp(mlir::xla_hlo::WhileOp while_op) {
// cond_br %2, ^body(%0), ^tail(%0) // Branch. // cond_br %2, ^body(%0), ^tail(%0) // Branch.
builder.setInsertionPointToStart(cond_block); builder.setInsertionPointToStart(cond_block);
// Replace the xla_hlo::ReturnOp with a branch back to the condition block. // Replace the mhlo::ReturnOp with a branch back to the condition block.
// This is required as the xla_hlo::ReturnOp is used to mark the end of a // This is required as the mhlo::ReturnOp is used to mark the end of a
// block for regions nested inside of a operations (MLIR ReturnOp cannot be // block for regions nested inside of a operations (MLIR ReturnOp cannot be
// nested within an non-function region). // nested within an non-function region).
for (auto& block : while_op.cond()) { for (auto& block : while_op.cond()) {
auto new_block = mapper.lookup(&block); auto new_block = mapper.lookup(&block);
auto return_op = dyn_cast<xla_hlo::ReturnOp>(new_block->getTerminator()); auto return_op = dyn_cast<mhlo::ReturnOp>(new_block->getTerminator());
if (!return_op) continue; if (!return_op) continue;
builder.setInsertionPointToEnd(new_block); builder.setInsertionPointToEnd(new_block);
@ -183,7 +183,7 @@ LogicalResult LowerWhileOp(mlir::xla_hlo::WhileOp while_op) {
// conditional block. This changes the block below: // conditional block. This changes the block below:
// ^body(%0): // ^body(%0):
// <inlined body block> // <inlined body block>
// "xla_hlo".return(%1) // "mhlo".return(%1)
// //
// Into: // Into:
// ^body(%0): // ^body(%0):
@ -191,8 +191,7 @@ LogicalResult LowerWhileOp(mlir::xla_hlo::WhileOp while_op) {
// br ^cond(%0) // Branch. // br ^cond(%0) // Branch.
for (auto& block : while_op.body()) { for (auto& block : while_op.body()) {
auto new_block = mapper.lookup(&block); auto new_block = mapper.lookup(&block);
auto return_op = auto return_op = dyn_cast<mlir::mhlo::ReturnOp>(new_block->getTerminator());
dyn_cast<mlir::xla_hlo::ReturnOp>(new_block->getTerminator());
if (!return_op) continue; if (!return_op) continue;
builder.setInsertionPointToEnd(new_block); builder.setInsertionPointToEnd(new_block);
builder.create<mlir::BranchOp>(loc, cond_block, return_op.getOperands()); builder.create<mlir::BranchOp>(loc, cond_block, return_op.getOperands());
@ -224,14 +223,14 @@ void LegalizeControlFlow::runOnFunction() {
} }
} }
} // namespace } // namespace
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir
std::unique_ptr<mlir::OperationPass<mlir::FuncOp>> std::unique_ptr<mlir::OperationPass<mlir::FuncOp>>
mlir::xla_hlo::createLegalizeControlFlowPass() { mlir::mhlo::createLegalizeControlFlowPass() {
return std::make_unique<LegalizeControlFlow>(); return std::make_unique<LegalizeControlFlow>();
} }
static PassRegistration<mlir::xla_hlo::LegalizeControlFlow> legalize_cf_pass( static PassRegistration<mlir::mhlo::LegalizeControlFlow> legalize_cf_pass(
"xla-legalize-control-flow", "xla-legalize-control-flow",
"Legalize from XLA control flow to MLIR control flow"); "Legalize from XLA control flow to MLIR control flow");

View File

@ -28,14 +28,14 @@ namespace mlir {
namespace { namespace {
#include "third_party/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/generated_legalize_to_standard.inc" #include "third_party/tensorflow/compiler/mlir/hlo/lib/Dialect/mhlo/transforms/generated_legalize_to_standard.inc"
} // end anonymous namespace } // end anonymous namespace
namespace xla_hlo { namespace mhlo {
namespace { namespace {
class CompareIConvert : public OpRewritePattern<xla_hlo::CompareOp> { class CompareIConvert : public OpRewritePattern<mhlo::CompareOp> {
public: public:
using OpRewritePattern::OpRewritePattern; using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(xla_hlo::CompareOp op, LogicalResult matchAndRewrite(mhlo::CompareOp op,
PatternRewriter &rewriter) const override { PatternRewriter &rewriter) const override {
auto lhs = op.lhs(); auto lhs = op.lhs();
auto rhs = op.rhs(); auto rhs = op.rhs();
@ -68,11 +68,11 @@ class CompareIConvert : public OpRewritePattern<xla_hlo::CompareOp> {
} }
}; };
class CompareFConvert : public OpRewritePattern<xla_hlo::CompareOp> { class CompareFConvert : public OpRewritePattern<mhlo::CompareOp> {
public: public:
using OpRewritePattern::OpRewritePattern; using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(xla_hlo::CompareOp op, LogicalResult matchAndRewrite(mhlo::CompareOp op,
PatternRewriter &rewriter) const override { PatternRewriter &rewriter) const override {
auto lhs = op.lhs(); auto lhs = op.lhs();
auto rhs = op.rhs(); auto rhs = op.rhs();
@ -109,11 +109,11 @@ class CompareFConvert : public OpRewritePattern<xla_hlo::CompareOp> {
// convert the integer constant to iota result type. For complex types, the real // convert the integer constant to iota result type. For complex types, the real
// part is replaced with the generated constant and the imaginary part is // part is replaced with the generated constant and the imaginary part is
// replaced with zero tensor. // replaced with zero tensor.
class ConvertIotaOp : public OpRewritePattern<xla_hlo::IotaOp> { class ConvertIotaOp : public OpRewritePattern<mhlo::IotaOp> {
public: public:
using OpRewritePattern::OpRewritePattern; using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(xla_hlo::IotaOp op, LogicalResult matchAndRewrite(mhlo::IotaOp op,
PatternRewriter &rewriter) const override { PatternRewriter &rewriter) const override {
auto output_type = op.getType().cast<ShapedType>(); auto output_type = op.getType().cast<ShapedType>();
auto output_size = output_type.getNumElements(); auto output_size = output_type.getNumElements();
@ -168,8 +168,7 @@ class ConvertIotaOp : public OpRewritePattern<xla_hlo::IotaOp> {
loc, DenseIntElementsAttr::get(int_shape_type, APInt(bitwidth, 0))); loc, DenseIntElementsAttr::get(int_shape_type, APInt(bitwidth, 0)));
auto imag_zeroes = auto imag_zeroes =
rewriter.create<ConvertOp>(loc, int_or_float_shape_ty, zeroes); rewriter.create<ConvertOp>(loc, int_or_float_shape_ty, zeroes);
rewriter.replaceOpWithNewOp<xla_hlo::ComplexOp>(op, iota_const, rewriter.replaceOpWithNewOp<mhlo::ComplexOp>(op, iota_const, imag_zeroes);
imag_zeroes);
return success(); return success();
} }
}; };
@ -197,12 +196,12 @@ void PopulateXlaToStdPatterns(OwningRewritePatternList *patterns,
/// Perform the lowering to standard dialect. /// Perform the lowering to standard dialect.
void LegalizeToStandard::runOnFunction() { void LegalizeToStandard::runOnFunction() {
OwningRewritePatternList patterns; OwningRewritePatternList patterns;
mlir::xla_hlo::PopulateXlaToStdPatterns(&patterns, &getContext()); mlir::mhlo::PopulateXlaToStdPatterns(&patterns, &getContext());
applyPatternsAndFoldGreedily(getFunction(), patterns); applyPatternsAndFoldGreedily(getFunction(), patterns);
} }
static PassRegistration<LegalizeToStandard> legalize_pass( static PassRegistration<LegalizeToStandard> legalize_pass(
"xla-legalize-to-std", "Legalize from XLA dialect to standard dialect"); "xla-legalize-to-std", "Legalize from XLA dialect to standard dialect");
} // end namespace xla_hlo } // end namespace mhlo
} // end namespace mlir } // end namespace mlir

View File

@ -84,13 +84,13 @@ Value TransposeReshape(Value arg, mlir::Location loc,
transposed_shape.push_back(arg_shape[val]); transposed_shape.push_back(arg_shape[val]);
} }
auto transpose_type = RankedTensorType::get(transposed_shape, element_type); auto transpose_type = RankedTensorType::get(transposed_shape, element_type);
auto transpose_result = rewriter->create<mlir::xla_hlo::TransposeOp>( auto transpose_result = rewriter->create<mlir::mhlo::TransposeOp>(
loc, transpose_type, arg, transpose_permutation_attr); loc, transpose_type, arg, transpose_permutation_attr);
// Return the final result. // Return the final result.
auto reshaped_type = auto reshaped_type =
RankedTensorType::get({left_size, right_size}, element_type); RankedTensorType::get({left_size, right_size}, element_type);
return rewriter->create<mlir::xla_hlo::ReshapeOp>(loc, reshaped_type, return rewriter->create<mlir::mhlo::ReshapeOp>(loc, reshaped_type,
transpose_result); transpose_result);
} }
@ -125,8 +125,7 @@ Value ProcessDotArg(Value arg, mlir::Location loc,
return TransposeReshape(arg, loc, contract_dims, outer_dims, shape, rewriter); return TransposeReshape(arg, loc, contract_dims, outer_dims, shape, rewriter);
} }
struct GeneralDotConvert struct GeneralDotConvert : public OpRewritePattern<mlir::mhlo::DotGeneralOp> {
: public OpRewritePattern<mlir::xla_hlo::DotGeneralOp> {
// Attempts to lower a General Dot operator to a standard Dot operator. // Attempts to lower a General Dot operator to a standard Dot operator.
// General dots include batching dimensions and can have collapsing // General dots include batching dimensions and can have collapsing
// dimensions along any axis. Inserting correctly arrange transpose and // dimensions along any axis. Inserting correctly arrange transpose and
@ -138,7 +137,7 @@ struct GeneralDotConvert
explicit GeneralDotConvert(MLIRContext *context) explicit GeneralDotConvert(MLIRContext *context)
: OpRewritePattern(context) {} : OpRewritePattern(context) {}
LogicalResult matchAndRewrite(mlir::xla_hlo::DotGeneralOp op, LogicalResult matchAndRewrite(mlir::mhlo::DotGeneralOp op,
PatternRewriter &rewriter) const override { PatternRewriter &rewriter) const override {
auto dot_element_type = mlir::getElementTypeOrSelf(op); auto dot_element_type = mlir::getElementTypeOrSelf(op);
@ -162,10 +161,10 @@ struct GeneralDotConvert
auto new_dot_type = auto new_dot_type =
RankedTensorType::get({lhs_shape[0], rhs_shape[1]}, dot_element_type); RankedTensorType::get({lhs_shape[0], rhs_shape[1]}, dot_element_type);
auto new_dot_op = rewriter.create<mlir::xla_hlo::DotOp>( auto new_dot_op = rewriter.create<mlir::mhlo::DotOp>(
op.getLoc(), new_dot_type, lhs, rhs, *(op.precision_config())); op.getLoc(), new_dot_type, lhs, rhs, *(op.precision_config()));
rewriter.replaceOpWithNewOp<mlir::xla_hlo::ReshapeOp>(op, op.getType(), rewriter.replaceOpWithNewOp<mlir::mhlo::ReshapeOp>(op, op.getType(),
new_dot_op); new_dot_op);
return success(); return success();
} }
@ -176,15 +175,14 @@ struct LegalizeGeneralDot
/// Lower all general dots that can be represented as a non-batched matmul. /// Lower all general dots that can be represented as a non-batched matmul.
void runOnFunction() override { void runOnFunction() override {
OwningRewritePatternList patterns; OwningRewritePatternList patterns;
mlir::xla_hlo::PopulateGeneralDotOpLoweringPatterns(&patterns, mlir::mhlo::PopulateGeneralDotOpLoweringPatterns(&patterns, &getContext());
&getContext());
applyPatternsAndFoldGreedily(getFunction(), patterns); applyPatternsAndFoldGreedily(getFunction(), patterns);
} }
}; };
} // namespace } // namespace
void mlir::xla_hlo::PopulateGeneralDotOpLoweringPatterns( void mlir::mhlo::PopulateGeneralDotOpLoweringPatterns(
OwningRewritePatternList *patterns, MLIRContext *ctx) { OwningRewritePatternList *patterns, MLIRContext *ctx) {
patterns->insert<GeneralDotConvert>(ctx); patterns->insert<GeneralDotConvert>(ctx);
} }

View File

@ -23,7 +23,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
@ -86,5 +86,5 @@ void PopulateMaterializeBroadcastsPatterns(MLIRContext *context,
patterns->insert<ClampWithBroadcastConvert>(context); patterns->insert<ClampWithBroadcastConvert>(context);
} }
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -23,7 +23,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
@ -33,7 +33,7 @@ struct TestMaterializeBroadcastsPass
ConversionTarget conversionTarget(getContext()); ConversionTarget conversionTarget(getContext());
OwningRewritePatternList conversionPatterns; OwningRewritePatternList conversionPatterns;
// Consider the xla_hlo dialect legal for tests. // Consider the mhlo dialect legal for tests.
conversionTarget.addLegalDialect<XlaHloDialect>(); conversionTarget.addLegalDialect<XlaHloDialect>();
// The conversion uses helpers from the Standard dialect. // The conversion uses helpers from the Standard dialect.
conversionTarget.addLegalDialect<mlir::StandardOpsDialect>(); conversionTarget.addLegalDialect<mlir::StandardOpsDialect>();
@ -50,9 +50,9 @@ struct TestMaterializeBroadcastsPass
} // namespace } // namespace
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir
static mlir::PassRegistration<mlir::xla_hlo::TestMaterializeBroadcastsPass> static mlir::PassRegistration<mlir::mhlo::TestMaterializeBroadcastsPass> pass(
pass("test-xla-materialize-broadcasts", "test-xla-materialize-broadcasts",
"Test pass for materializing 'broadcast_dimensions' attributes"); "Test pass for materializing 'broadcast_dimensions' attributes");

View File

@ -60,7 +60,7 @@ limitations under the License.
// shape dialect once it is ready. // shape dialect once it is ready.
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
using llvm::EquivalenceClasses; using llvm::EquivalenceClasses;
@ -544,7 +544,7 @@ struct XlaHloFusion : public mlir::PassWrapper<XlaHloFusion, FunctionPass> {
} }
FusionOp fusion = FusionOp fusion =
b.create<xla_hlo::FusionOp>(fused_loc, output_types, inputs); b.create<mhlo::FusionOp>(fused_loc, output_types, inputs);
Region& region = fusion.fused_computation(); Region& region = fusion.fused_computation();
region.push_back(new Block); region.push_back(new Block);
Block& block = region.front(); Block& block = region.front();
@ -552,7 +552,7 @@ struct XlaHloFusion : public mlir::PassWrapper<XlaHloFusion, FunctionPass> {
op->moveBefore(&block, block.end()); op->moveBefore(&block, block.end());
} }
b.setInsertionPoint(&block, block.end()); b.setInsertionPoint(&block, block.end());
b.create<xla_hlo::ReturnOp>(fused_loc, outputs); b.create<mhlo::ReturnOp>(fused_loc, outputs);
for (auto output_and_result : llvm::zip(outputs, fusion.getResults())) { for (auto output_and_result : llvm::zip(outputs, fusion.getResults())) {
Value output = std::get<0>(output_and_result); Value output = std::get<0>(output_and_result);
@ -572,8 +572,8 @@ std::unique_ptr<OperationPass<FuncOp>> createXlaHloFusion() {
return std::make_unique<XlaHloFusion>(); return std::make_unique<XlaHloFusion>();
} }
static PassRegistration<XlaHloFusion> xla_hlo_fusion_pass( static PassRegistration<XlaHloFusion> mhlo_fusion_pass(
"xla-hlo-fusion", "fuse xla_hlo ops to kLoop/kInput fusion patterns."); "xla-hlo-fusion", "fuse mhlo ops to kLoop/kInput fusion patterns.");
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -23,7 +23,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
@ -81,5 +81,5 @@ std::unique_ptr<OperationPass<FuncOp>> createSinkConstantsToControlFlowPass() {
return std::make_unique<SinkConstantsToControlFlow>(); return std::make_unique<SinkConstantsToControlFlow>();
} }
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -25,7 +25,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
@ -40,11 +40,11 @@ Value BroadcastToFeatureDim(Location loc, RankedTensorType result_type,
auto dims_type = RankedTensorType::get({1}, b.getIntegerType(64)); auto dims_type = RankedTensorType::get({1}, b.getIntegerType(64));
auto dims = DenseIntElementsAttr::get(dims_type, {feature_dim}); auto dims = DenseIntElementsAttr::get(dims_type, {feature_dim});
if (shape_value) { if (shape_value) {
return rewriter.createOrFold<xla_hlo::DynamicBroadcastInDimOp>( return rewriter.createOrFold<mhlo::DynamicBroadcastInDimOp>(
loc, result_type, value_1d, shape_value, dims); loc, result_type, value_1d, shape_value, dims);
} }
assert(result_type.hasStaticShape()); assert(result_type.hasStaticShape());
return rewriter.create<xla_hlo::BroadcastInDimOp>(loc, result_type, value_1d, return rewriter.create<mhlo::BroadcastInDimOp>(loc, result_type, value_1d,
dims); dims);
} }
@ -89,25 +89,25 @@ Value MaterializeEpsilon(Operation* op, FloatAttr epsilon_attr,
auto epsilon_tensor_attr = auto epsilon_tensor_attr =
DenseElementsAttr::get(scalar_type, {epsilon_attr.cast<Attribute>()}); DenseElementsAttr::get(scalar_type, {epsilon_attr.cast<Attribute>()});
Value epsilon = Value epsilon =
rewriter.create<xla_hlo::ConstOp>(op->getLoc(), epsilon_tensor_attr); rewriter.create<mhlo::ConstOp>(op->getLoc(), epsilon_tensor_attr);
auto dims_type = RankedTensorType::get({0}, b.getIntegerType(64)); auto dims_type = RankedTensorType::get({0}, b.getIntegerType(64));
auto dims = DenseIntElementsAttr::get(dims_type, SmallVector<int64_t, 1>{}); auto dims = DenseIntElementsAttr::get(dims_type, SmallVector<int64_t, 1>{});
if (broadcast_to_type.hasStaticShape()) { if (broadcast_to_type.hasStaticShape()) {
return rewriter.create<xla_hlo::BroadcastInDimOp>( return rewriter.create<mhlo::BroadcastInDimOp>(
op->getLoc(), broadcast_to_type, epsilon, /*broadcast_dims=*/dims); op->getLoc(), broadcast_to_type, epsilon, /*broadcast_dims=*/dims);
} }
Value shape_value = CalculateShapeValue(op->getLoc(), variance, rewriter); Value shape_value = CalculateShapeValue(op->getLoc(), variance, rewriter);
return rewriter.createOrFold<xla_hlo::DynamicBroadcastInDimOp>( return rewriter.createOrFold<mhlo::DynamicBroadcastInDimOp>(
op->getLoc(), broadcast_to_type, epsilon, shape_value, op->getLoc(), broadcast_to_type, epsilon, shape_value,
/*broadcast_dims=*/dims); /*broadcast_dims=*/dims);
} }
class UnfuseBatchNormInferencePattern class UnfuseBatchNormInferencePattern
: public OpRewritePattern<xla_hlo::BatchNormInferenceOp> { : public OpRewritePattern<mhlo::BatchNormInferenceOp> {
public: public:
using OpRewritePattern<xla_hlo::BatchNormInferenceOp>::OpRewritePattern; using OpRewritePattern<mhlo::BatchNormInferenceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(xla_hlo::BatchNormInferenceOp bn_op, LogicalResult matchAndRewrite(mhlo::BatchNormInferenceOp bn_op,
PatternRewriter& rewriter) const override { PatternRewriter& rewriter) const override {
// Enforce type invariants. // Enforce type invariants.
// Note that we deduce the actual element type from the variance, // Note that we deduce the actual element type from the variance,
@ -132,9 +132,9 @@ class UnfuseBatchNormInferencePattern
if (!epsilon) { if (!epsilon) {
return failure(); return failure();
} }
Value stddev = rewriter.create<xla_hlo::AddOp>(bn_op.getLoc(), Value stddev =
bn_op.variance(), epsilon); rewriter.create<mhlo::AddOp>(bn_op.getLoc(), bn_op.variance(), epsilon);
stddev = rewriter.create<xla_hlo::SqrtOp>(bn_op.getLoc(), stddev); stddev = rewriter.create<mhlo::SqrtOp>(bn_op.getLoc(), stddev);
// Broadcast all terms. // Broadcast all terms.
Value shape_value; Value shape_value;
@ -156,14 +156,13 @@ class UnfuseBatchNormInferencePattern
// Compute: // Compute:
// scale * (input - mean) / stddev + offset // scale * (input - mean) / stddev + offset
Value result = rewriter.create<xla_hlo::SubOp>( Value result = rewriter.create<mhlo::SubOp>(bn_op.getLoc(), bn_op.operand(),
bn_op.getLoc(), bn_op.operand(), broadcast_mean); broadcast_mean);
result = rewriter.create<xla_hlo::MulOp>(bn_op.getLoc(), result, result =
broadcast_scale); rewriter.create<mhlo::MulOp>(bn_op.getLoc(), result, broadcast_scale);
result = rewriter.create<xla_hlo::DivOp>(bn_op.getLoc(), result, result =
broadcast_stddev); rewriter.create<mhlo::DivOp>(bn_op.getLoc(), result, broadcast_stddev);
rewriter.replaceOpWithNewOp<xla_hlo::AddOp>(bn_op, result, rewriter.replaceOpWithNewOp<mhlo::AddOp>(bn_op, result, broadcast_offset);
broadcast_offset);
return success(); return success();
} }
@ -180,5 +179,5 @@ void PopulateUnfuseBatchNormPatterns(MLIRContext* context,
patterns->insert<UnfuseBatchNormInferencePattern>(context); patterns->insert<UnfuseBatchNormInferencePattern>(context);
} }
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -23,7 +23,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
@ -38,9 +38,9 @@ struct TestUnfuseBatchNormPass
} // namespace } // namespace
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir
static mlir::PassRegistration<mlir::xla_hlo::TestUnfuseBatchNormPass> pass( static mlir::PassRegistration<mlir::mhlo::TestUnfuseBatchNormPass> pass(
"test-xla-unfuse-batch-norm", "test-xla-unfuse-batch-norm",
"Test pass for materializing 'broadcast_dimensions' attributes"); "Test pass for materializing 'broadcast_dimensions' attributes");

View File

@ -182,7 +182,7 @@ struct ConvToLinalgConverter : public OpConversionPattern<xla_lhlo::ConvOp> {
using OpConversionPattern<xla_lhlo::ConvOp>::OpConversionPattern; using OpConversionPattern<xla_lhlo::ConvOp>::OpConversionPattern;
// This code has been adapted from IREE's // This code has been adapted from IREE's
// (https://github.com/google/iree/) xla_hlo -> linalg conversion. // (https://github.com/google/iree/) mhlo -> linalg conversion.
LogicalResult matchAndRewrite( LogicalResult matchAndRewrite(
xla_lhlo::ConvOp op, ArrayRef<Value> args, xla_lhlo::ConvOp op, ArrayRef<Value> args,
ConversionPatternRewriter& rewriter) const final { ConversionPatternRewriter& rewriter) const final {
@ -348,14 +348,14 @@ class BroadcastConverter
class HloBroadcastInDimConverter class HloBroadcastInDimConverter
: public DataMovementOpConverter<HloBroadcastInDimConverter, : public DataMovementOpConverter<HloBroadcastInDimConverter,
xla_hlo::BroadcastInDimOp, false> { mhlo::BroadcastInDimOp, false> {
public: public:
using DataMovementOpConverter<HloBroadcastInDimConverter, using DataMovementOpConverter<HloBroadcastInDimConverter,
xla_hlo::BroadcastInDimOp, mhlo::BroadcastInDimOp,
false>::DataMovementOpConverter; false>::DataMovementOpConverter;
static SmallVector<AffineMap, 2> getIndexingMaps( static SmallVector<AffineMap, 2> getIndexingMaps(
xla_hlo::BroadcastInDimOp broadcastOp, Builder* b) { mhlo::BroadcastInDimOp broadcastOp, Builder* b) {
auto resultType = getXLAOpResultType<false>(broadcastOp); auto resultType = getXLAOpResultType<false>(broadcastOp);
auto operandType = auto operandType =
broadcastOp.operand().getType().template cast<ShapedType>(); broadcastOp.operand().getType().template cast<ShapedType>();
@ -845,7 +845,7 @@ struct HloLegalizeToLinalg
target.addLegalDialect<linalg::LinalgDialect, StandardOpsDialect>(); target.addLegalDialect<linalg::LinalgDialect, StandardOpsDialect>();
auto func = getFunction(); auto func = getFunction();
xla_hlo::populateHLOToLinalgConversionPattern(func.getContext(), &patterns); mhlo::populateHLOToLinalgConversionPattern(func.getContext(), &patterns);
if (failed(applyPartialConversion(func, target, patterns, nullptr))) { if (failed(applyPartialConversion(func, target, patterns, nullptr))) {
signalPassFailure(); signalPassFailure();
} }
@ -863,40 +863,40 @@ static PassRegistration<LhloLegalizeToLinalg> legalize_lhlo_pass(
"lhlo-legalize-to-linalg", "Legalize from LHLO dialect to Linalg dialect"); "lhlo-legalize-to-linalg", "Legalize from LHLO dialect to Linalg dialect");
} // namespace xla_lhlo } // namespace xla_lhlo
namespace xla_hlo { namespace mhlo {
void populateHLOToLinalgConversionPattern(MLIRContext* context, void populateHLOToLinalgConversionPattern(MLIRContext* context,
OwningRewritePatternList* patterns) { OwningRewritePatternList* patterns) {
patterns->insert<BroadcastConverter<xla_hlo::BroadcastOp, false>, patterns->insert<BroadcastConverter<mhlo::BroadcastOp, false>,
HloBroadcastInDimConverter, HloBroadcastInDimConverter,
PointwiseToLinalgConverter<xla_hlo::AbsOp, false>, PointwiseToLinalgConverter<mhlo::AbsOp, false>,
PointwiseToLinalgConverter<xla_hlo::AddOp, false>, PointwiseToLinalgConverter<mhlo::AddOp, false>,
PointwiseToLinalgConverter<xla_hlo::AndOp, false>, PointwiseToLinalgConverter<mhlo::AndOp, false>,
PointwiseToLinalgConverter<xla_hlo::CeilOp, false>, PointwiseToLinalgConverter<mhlo::CeilOp, false>,
PointwiseToLinalgConverter<xla_hlo::CompareOp, false>, PointwiseToLinalgConverter<mhlo::CompareOp, false>,
PointwiseToLinalgConverter<xla_hlo::ComplexOp, false>, PointwiseToLinalgConverter<mhlo::ComplexOp, false>,
PointwiseToLinalgConverter<xla_hlo::ConvertOp, false>, PointwiseToLinalgConverter<mhlo::ConvertOp, false>,
PointwiseToLinalgConverter<xla_hlo::CopyOp, false>, PointwiseToLinalgConverter<mhlo::CopyOp, false>,
PointwiseToLinalgConverter<xla_hlo::CosOp, false>, PointwiseToLinalgConverter<mhlo::CosOp, false>,
PointwiseToLinalgConverter<xla_hlo::DivOp, false>, PointwiseToLinalgConverter<mhlo::DivOp, false>,
PointwiseToLinalgConverter<xla_hlo::ExpOp, false>, PointwiseToLinalgConverter<mhlo::ExpOp, false>,
PointwiseToLinalgConverter<xla_hlo::ImagOp, false>, PointwiseToLinalgConverter<mhlo::ImagOp, false>,
PointwiseToLinalgConverter<xla_hlo::LogOp, false>, PointwiseToLinalgConverter<mhlo::LogOp, false>,
PointwiseToLinalgConverter<xla_hlo::MaxOp, false>, PointwiseToLinalgConverter<mhlo::MaxOp, false>,
PointwiseToLinalgConverter<xla_hlo::MinOp, false>, PointwiseToLinalgConverter<mhlo::MinOp, false>,
PointwiseToLinalgConverter<xla_hlo::MulOp, false>, PointwiseToLinalgConverter<mhlo::MulOp, false>,
PointwiseToLinalgConverter<xla_hlo::NegOp, false>, PointwiseToLinalgConverter<mhlo::NegOp, false>,
PointwiseToLinalgConverter<xla_hlo::RealOp, false>, PointwiseToLinalgConverter<mhlo::RealOp, false>,
PointwiseToLinalgConverter<xla_hlo::RemOp, false>, PointwiseToLinalgConverter<mhlo::RemOp, false>,
PointwiseToLinalgConverter<xla_hlo::RsqrtOp, false>, PointwiseToLinalgConverter<mhlo::RsqrtOp, false>,
PointwiseToLinalgConverter<xla_hlo::SelectOp, false>, PointwiseToLinalgConverter<mhlo::SelectOp, false>,
PointwiseToLinalgConverter<xla_hlo::SinOp, false>, PointwiseToLinalgConverter<mhlo::SinOp, false>,
PointwiseToLinalgConverter<xla_hlo::SqrtOp, false>, PointwiseToLinalgConverter<mhlo::SqrtOp, false>,
PointwiseToLinalgConverter<xla_hlo::SubOp, false>, PointwiseToLinalgConverter<mhlo::SubOp, false>,
PointwiseToLinalgConverter<xla_hlo::TanhOp, false>, PointwiseToLinalgConverter<mhlo::TanhOp, false>,
ReshapeOpConverter<xla_hlo::ReshapeOp, false>, ReshapeOpConverter<mhlo::ReshapeOp, false>,
ReverseConverter<xla_hlo::ReverseOp, false>, ReverseConverter<mhlo::ReverseOp, false>,
TransposeConverter<xla_hlo::TransposeOp, false>>(context); TransposeConverter<mhlo::TransposeOp, false>>(context);
} }
std::unique_ptr<OperationPass<FuncOp>> createLegalizeHloToLinalgPass() { std::unique_ptr<OperationPass<FuncOp>> createLegalizeHloToLinalgPass() {
@ -905,5 +905,5 @@ std::unique_ptr<OperationPass<FuncOp>> createLegalizeHloToLinalgPass() {
static PassRegistration<HloLegalizeToLinalg> legalize_hlo_pass( static PassRegistration<HloLegalizeToLinalg> legalize_hlo_pass(
"hlo-legalize-to-linalg", "Legalize from HLO dialect to Linalg dialect"); "hlo-legalize-to-linalg", "Legalize from HLO dialect to Linalg dialect");
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -28,7 +28,7 @@ limitations under the License.
#include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h"
namespace mlir { namespace mlir {
namespace xla_hlo { namespace mhlo {
namespace { namespace {
// TODO(frgossen): Make it variadic. // TODO(frgossen): Make it variadic.
@ -69,7 +69,7 @@ struct UnaryElementwiseOpConversion : public OpRewritePattern<OpTy> {
rewriter.create<TensorFromElementsOp>(loc, numElementsAsIndex); rewriter.create<TensorFromElementsOp>(loc, numElementsAsIndex);
auto flatTensorTy = RankedTensorType::get({ShapedType::kDynamicSize}, auto flatTensorTy = RankedTensorType::get({ShapedType::kDynamicSize},
operandTy.getElementType()); operandTy.getElementType());
Value flatOperand = rewriter.create<xla_hlo::DynamicReshapeOp>( Value flatOperand = rewriter.create<mhlo::DynamicReshapeOp>(
loc, flatTensorTy, operand, flatShapeAsDimTensor); loc, flatTensorTy, operand, flatShapeAsDimTensor);
// Generate IR for the actual operation. // Generate IR for the actual operation.
@ -80,7 +80,7 @@ struct UnaryElementwiseOpConversion : public OpRewritePattern<OpTy> {
rewriter.getIndexType()); rewriter.getIndexType());
Value shapeAsExtentTensor = Value shapeAsExtentTensor =
rewriter.create<shape::ToExtentTensorOp>(loc, extentTensorTy, shape); rewriter.create<shape::ToExtentTensorOp>(loc, extentTensorTy, shape);
Value result = rewriter.create<xla_hlo::DynamicReshapeOp>( Value result = rewriter.create<mhlo::DynamicReshapeOp>(
loc, operandTy, flatResult, shapeAsExtentTensor); loc, operandTy, flatResult, shapeAsExtentTensor);
rewriter.replaceOp(op, result); rewriter.replaceOp(op, result);
@ -184,5 +184,5 @@ static PassRegistration<TransformUnrankedHloPass> transform_unranked_hlo_pass(
"transform-unranked-hlo", "transform-unranked-hlo",
"Realize element-wise operations on ranked tensors where possible"); "Realize element-wise operations on ranked tensors where possible");
} // namespace xla_hlo } // namespace mhlo
} // namespace mlir } // namespace mlir

View File

@ -2,107 +2,107 @@
// CHECK-LABEL: add_fold // CHECK-LABEL: add_fold
func @add_fold() -> tensor<4xi64> { func @add_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<[1, 2, 3, 4]> : tensor<4xi64> %0 = mhlo.constant dense<[1, 2, 3, 4]> : tensor<4xi64>
%1 = xla_hlo.constant dense<[5, 6, 7, 8]> : tensor<4xi64> %1 = mhlo.constant dense<[5, 6, 7, 8]> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<[6, 8, 10, 12]> // CHECK: mhlo.constant dense<[6, 8, 10, 12]>
%2 = "xla_hlo.add"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.add"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: add_scalar_fold // CHECK-LABEL: add_scalar_fold
func @add_scalar_fold() -> tensor<4xi64> { func @add_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<1> : tensor<4xi64> %0 = mhlo.constant dense<1> : tensor<4xi64>
%1 = xla_hlo.constant dense<5> : tensor<4xi64> %1 = mhlo.constant dense<5> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<6> // CHECK: mhlo.constant dense<6>
%2 = "xla_hlo.add"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.add"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: add_fold_float // CHECK-LABEL: add_fold_float
func @add_fold_float() -> tensor<4xf64> { func @add_fold_float() -> tensor<4xf64> {
%0 = xla_hlo.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf64> %0 = mhlo.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf64>
%1 = xla_hlo.constant dense<[5.0, 6.0, 7.0, 8.0]> : tensor<4xf64> %1 = mhlo.constant dense<[5.0, 6.0, 7.0, 8.0]> : tensor<4xf64>
// CHECK: xla_hlo.constant dense<[6.000000e+00, 8.000000e+00, 1.000000e+01, 1.200000e+01]> // CHECK: mhlo.constant dense<[6.000000e+00, 8.000000e+00, 1.000000e+01, 1.200000e+01]>
%2 = "xla_hlo.add"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>) %2 = "mhlo.add"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>)
return %2 : tensor<4xf64> return %2 : tensor<4xf64>
} }
// CHECK-LABEL: sub_scalar_fold // CHECK-LABEL: sub_scalar_fold
func @sub_scalar_fold() -> tensor<4xi64> { func @sub_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<5> : tensor<4xi64> %0 = mhlo.constant dense<5> : tensor<4xi64>
%1 = xla_hlo.constant dense<1> : tensor<4xi64> %1 = mhlo.constant dense<1> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<4> // CHECK: mhlo.constant dense<4>
%2 = "xla_hlo.subtract"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.subtract"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: multiply_scalar_fold // CHECK-LABEL: multiply_scalar_fold
func @multiply_scalar_fold() -> tensor<4xi64> { func @multiply_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<5> : tensor<4xi64> %0 = mhlo.constant dense<5> : tensor<4xi64>
%1 = xla_hlo.constant dense<3> : tensor<4xi64> %1 = mhlo.constant dense<3> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<15> // CHECK: mhlo.constant dense<15>
%2 = "xla_hlo.multiply"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.multiply"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: divide_scalar_fold // CHECK-LABEL: divide_scalar_fold
func @divide_scalar_fold() -> tensor<4xi64> { func @divide_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<7> : tensor<4xi64> %0 = mhlo.constant dense<7> : tensor<4xi64>
%1 = xla_hlo.constant dense<5> : tensor<4xi64> %1 = mhlo.constant dense<5> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<1> // CHECK: mhlo.constant dense<1>
%2 = "xla_hlo.divide"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.divide"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: divide_fold_float // CHECK-LABEL: divide_fold_float
func @divide_fold_float() -> tensor<4xf64> { func @divide_fold_float() -> tensor<4xf64> {
%0 = xla_hlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64> %0 = mhlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64>
%1 = xla_hlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64> %1 = mhlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64>
// CHECK: xla_hlo.constant dense<[1.000000e+00, 2.200000e+01, 2.500000e+00, 2.500000e-01]> // CHECK: mhlo.constant dense<[1.000000e+00, 2.200000e+01, 2.500000e+00, 2.500000e-01]>
%2 = "xla_hlo.divide"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>) %2 = "mhlo.divide"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>)
return %2 : tensor<4xf64> return %2 : tensor<4xf64>
} }
// CHECK-LABEL: max_scalar_fold // CHECK-LABEL: max_scalar_fold
func @max_scalar_fold() -> tensor<4xi64> { func @max_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<7> : tensor<4xi64> %0 = mhlo.constant dense<7> : tensor<4xi64>
%1 = xla_hlo.constant dense<5> : tensor<4xi64> %1 = mhlo.constant dense<5> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<7> // CHECK: mhlo.constant dense<7>
%2 = "xla_hlo.maximum"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.maximum"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: max_fold_float // CHECK-LABEL: max_fold_float
func @max_fold_float() -> tensor<4xf64> { func @max_fold_float() -> tensor<4xf64> {
%0 = xla_hlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64> %0 = mhlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64>
%1 = xla_hlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64> %1 = mhlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64>
// CHECK: xla_hlo.constant dense<[5.000000e+00, 6.600000e+01, 5.000000e+00, 4.000000e+00]> // CHECK: mhlo.constant dense<[5.000000e+00, 6.600000e+01, 5.000000e+00, 4.000000e+00]>
%2 = "xla_hlo.maximum"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>) %2 = "mhlo.maximum"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>)
return %2 : tensor<4xf64> return %2 : tensor<4xf64>
} }
// CHECK-LABEL: min_scalar_fold // CHECK-LABEL: min_scalar_fold
func @min_scalar_fold() -> tensor<4xi64> { func @min_scalar_fold() -> tensor<4xi64> {
%0 = xla_hlo.constant dense<7> : tensor<4xi64> %0 = mhlo.constant dense<7> : tensor<4xi64>
%1 = xla_hlo.constant dense<-5> : tensor<4xi64> %1 = mhlo.constant dense<-5> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<-5> // CHECK: mhlo.constant dense<-5>
%2 = "xla_hlo.minimum"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>) %2 = "mhlo.minimum"(%0, %1) : (tensor<4xi64>, tensor<4xi64>) -> (tensor<4xi64>)
return %2 : tensor<4xi64> return %2 : tensor<4xi64>
} }
// CHECK-LABEL: min_fold_float // CHECK-LABEL: min_fold_float
func @min_fold_float() -> tensor<4xf64> { func @min_fold_float() -> tensor<4xf64> {
%0 = xla_hlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64> %0 = mhlo.constant dense<[5.0, 66.0, 5.0, 1.0]> : tensor<4xf64>
%1 = xla_hlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64> %1 = mhlo.constant dense<[5.0, 3.0, 2.0, 4.0]> : tensor<4xf64>
// CHECK: xla_hlo.constant dense<[5.000000e+00, 3.000000e+00, 2.000000e+00, 1.000000e+00]> // CHECK: mhlo.constant dense<[5.000000e+00, 3.000000e+00, 2.000000e+00, 1.000000e+00]>
%2 = "xla_hlo.minimum"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>) %2 = "mhlo.minimum"(%0, %1) : (tensor<4xf64>, tensor<4xf64>) -> (tensor<4xf64>)
return %2 : tensor<4xf64> return %2 : tensor<4xf64>
} }
// CHECK-LABEL: concatenate_noop // CHECK-LABEL: concatenate_noop
func @concatenate_noop(%arg0: tensor<4xi32>) -> tensor<4xi32> { func @concatenate_noop(%arg0: tensor<4xi32>) -> tensor<4xi32> {
// CHECK-SAME: [[ARG:%.+]]: tensor<4xi32> // CHECK-SAME: [[ARG:%.+]]: tensor<4xi32>
%0 = "xla_hlo.concatenate"(%arg0) { dimension = 0 : i64 } : (tensor<4xi32>) -> tensor<4xi32> %0 = "mhlo.concatenate"(%arg0) { dimension = 0 : i64 } : (tensor<4xi32>) -> tensor<4xi32>
// CHECK: return [[ARG]] // CHECK: return [[ARG]]
return %0 : tensor<4xi32> return %0 : tensor<4xi32>
@ -112,7 +112,7 @@ func @concatenate_noop(%arg0: tensor<4xi32>) -> tensor<4xi32> {
func @concatenate_remove_operand(%arg0: tensor<4xi32>, %arg1: tensor<0xi32>) -> tensor<4xi32> { func @concatenate_remove_operand(%arg0: tensor<4xi32>, %arg1: tensor<0xi32>) -> tensor<4xi32> {
// CHECK-SAME: [[ARG0:%.+]]: tensor<4xi32> // CHECK-SAME: [[ARG0:%.+]]: tensor<4xi32>
// CHECK-SAME: [[ARG1:%.+]]: tensor<0xi32> // CHECK-SAME: [[ARG1:%.+]]: tensor<0xi32>
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<4xi32>, tensor<0xi32>) -> tensor<4xi32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<4xi32>, tensor<0xi32>) -> tensor<4xi32>
// CHECK: return [[ARG0]] // CHECK: return [[ARG0]]
return %0 : tensor<4xi32> return %0 : tensor<4xi32>
@ -120,34 +120,34 @@ func @concatenate_remove_operand(%arg0: tensor<4xi32>, %arg1: tensor<0xi32>) ->
// CHECK-LABEL: concatenate_empty_bool // CHECK-LABEL: concatenate_empty_bool
func @concatenate_empty_bool(%arg0: tensor<0xi1>, %arg1: tensor<0xi1>) -> tensor<0xi1> { func @concatenate_empty_bool(%arg0: tensor<0xi1>, %arg1: tensor<0xi1>) -> tensor<0xi1> {
// CHECK: xla_hlo.constant // CHECK: mhlo.constant
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xi1>, tensor<0xi1>) -> tensor<0xi1> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xi1>, tensor<0xi1>) -> tensor<0xi1>
return %0 : tensor<0xi1> return %0 : tensor<0xi1>
} }
// CHECK-LABEL: concatenate_empty_int // CHECK-LABEL: concatenate_empty_int
func @concatenate_empty_int(%arg0: tensor<0xi32>, %arg1: tensor<0xi32>) -> tensor<0xi32> { func @concatenate_empty_int(%arg0: tensor<0xi32>, %arg1: tensor<0xi32>) -> tensor<0xi32> {
// CHECK: xla_hlo.constant // CHECK: mhlo.constant
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xi32>, tensor<0xi32>) -> tensor<0xi32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xi32>, tensor<0xi32>) -> tensor<0xi32>
return %0 : tensor<0xi32> return %0 : tensor<0xi32>
} }
// CHECK-LABEL: concatenate_empty_float // CHECK-LABEL: concatenate_empty_float
func @concatenate_empty_float(%arg0: tensor<0xf32>, %arg1: tensor<0xf32>) -> tensor<0xf32> { func @concatenate_empty_float(%arg0: tensor<0xf32>, %arg1: tensor<0xf32>) -> tensor<0xf32> {
// CHECK: xla_hlo.constant // CHECK: mhlo.constant
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xf32>, tensor<0xf32>) -> tensor<0xf32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<0xf32>, tensor<0xf32>) -> tensor<0xf32>
return %0 : tensor<0xf32> return %0 : tensor<0xf32>
} }
// CHECK-LABEL: concatenate_const_1D // CHECK-LABEL: concatenate_const_1D
func @concatenate_const_1D() -> tensor<4xi32> { func @concatenate_const_1D() -> tensor<4xi32> {
// CHECK: [[VAL:%.+]]= xla_hlo.constant dense<[0, 1, 2, 3]> // CHECK: [[VAL:%.+]]= mhlo.constant dense<[0, 1, 2, 3]>
%0 = xla_hlo.constant dense<[0, 1]> : tensor<2xi32> %0 = mhlo.constant dense<[0, 1]> : tensor<2xi32>
%1 = xla_hlo.constant dense<[2, 3]> : tensor<2xi32> %1 = mhlo.constant dense<[2, 3]> : tensor<2xi32>
%2 = "xla_hlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<2xi32>, tensor<2xi32>) -> tensor<4xi32> %2 = "mhlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<2xi32>, tensor<2xi32>) -> tensor<4xi32>
// CHECK: return [[VAL]] // CHECK: return [[VAL]]
return %2 : tensor<4xi32> return %2 : tensor<4xi32>
@ -155,11 +155,11 @@ func @concatenate_const_1D() -> tensor<4xi32> {
// CHECK-LABEL: concatenate_const_1D_float // CHECK-LABEL: concatenate_const_1D_float
func @concatenate_const_1D_float() -> tensor<4xf32> { func @concatenate_const_1D_float() -> tensor<4xf32> {
// CHECK: [[VAL:%.+]] = xla_hlo.constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> // CHECK: [[VAL:%.+]] = mhlo.constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]>
%0 = xla_hlo.constant dense<[0.0, 1.0]> : tensor<2xf32> %0 = mhlo.constant dense<[0.0, 1.0]> : tensor<2xf32>
%1 = xla_hlo.constant dense<[2.0, 3.0]> : tensor<2xf32> %1 = mhlo.constant dense<[2.0, 3.0]> : tensor<2xf32>
%2 = "xla_hlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<2xf32>, tensor<2xf32>) -> tensor<4xf32> %2 = "mhlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<2xf32>, tensor<2xf32>) -> tensor<4xf32>
// CHECK: return [[VAL]] // CHECK: return [[VAL]]
return %2 : tensor<4xf32> return %2 : tensor<4xf32>
@ -167,12 +167,12 @@ func @concatenate_const_1D_float() -> tensor<4xf32> {
// CHECK-LABEL: concatenate_const_2D_vertical // CHECK-LABEL: concatenate_const_2D_vertical
func @concatenate_const_2D_vertical() -> tensor<2x2xi32> { func @concatenate_const_2D_vertical() -> tensor<2x2xi32> {
// CHECK: [[VAL:%.+]]= xla_hlo.constant dense<[ // CHECK: [[VAL:%.+]]= mhlo.constant dense<[
// CHECK-SAME: [0, 1], [2, 3] // CHECK-SAME: [0, 1], [2, 3]
// CHECK-SAME: ]> // CHECK-SAME: ]>
%0 = xla_hlo.constant dense<[[0, 1]]> : tensor<1x2xi32> %0 = mhlo.constant dense<[[0, 1]]> : tensor<1x2xi32>
%1 = xla_hlo.constant dense<[[2, 3]]> : tensor<1x2xi32> %1 = mhlo.constant dense<[[2, 3]]> : tensor<1x2xi32>
%2 = "xla_hlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<1x2xi32>, tensor<1x2xi32>) -> tensor<2x2xi32> %2 = "mhlo.concatenate"(%0, %1) { dimension = 0 : i64 } : (tensor<1x2xi32>, tensor<1x2xi32>) -> tensor<2x2xi32>
// CHECK: return [[VAL]] // CHECK: return [[VAL]]
return %2 : tensor<2x2xi32> return %2 : tensor<2x2xi32>
@ -180,12 +180,12 @@ func @concatenate_const_2D_vertical() -> tensor<2x2xi32> {
// CHECK-LABEL: concatenate_const_2D_horizontal // CHECK-LABEL: concatenate_const_2D_horizontal
func @concatenate_const_2D_horizontal() -> tensor<2x2xi32> { func @concatenate_const_2D_horizontal() -> tensor<2x2xi32> {
// CHECK: [[VAL:%.+]]= xla_hlo.constant dense<[ // CHECK: [[VAL:%.+]]= mhlo.constant dense<[
// CHECK-SAME: [0, 2], [1, 3] // CHECK-SAME: [0, 2], [1, 3]
// CHECK-SAME: ]> // CHECK-SAME: ]>
%0 = xla_hlo.constant dense<[[0], [1]]> : tensor<2x1xi32> %0 = mhlo.constant dense<[[0], [1]]> : tensor<2x1xi32>
%1 = xla_hlo.constant dense<[[2], [3]]> : tensor<2x1xi32> %1 = mhlo.constant dense<[[2], [3]]> : tensor<2x1xi32>
%2 = "xla_hlo.concatenate"(%0, %1) { dimension = 1 : i64 } : (tensor<2x1xi32>, tensor<2x1xi32>) -> tensor<2x2xi32> %2 = "mhlo.concatenate"(%0, %1) { dimension = 1 : i64 } : (tensor<2x1xi32>, tensor<2x1xi32>) -> tensor<2x2xi32>
// CHECK: return [[VAL]] // CHECK: return [[VAL]]
return %2 : tensor<2x2xi32> return %2 : tensor<2x2xi32>
@ -193,40 +193,40 @@ func @concatenate_const_2D_horizontal() -> tensor<2x2xi32> {
// CHECK-LABEL: dynamic_slice_variable_start // CHECK-LABEL: dynamic_slice_variable_start
func @dynamic_slice_variable_start(%arg0: tensor<3x4xi32>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<1x4xi32> { func @dynamic_slice_variable_start(%arg0: tensor<3x4xi32>, %arg1: tensor<i64>, %arg2: tensor<i64>) -> tensor<1x4xi32> {
// CHECK: "xla_hlo.dynamic-slice" // CHECK: "mhlo.dynamic-slice"
%1 = "xla_hlo.dynamic-slice"(%arg0, %arg1, %arg2) {slice_sizes = dense<[1, 4]> : tensor<2xi64>} : (tensor<3x4xi32>, tensor<i64>, tensor<i64>) -> tensor<1x4xi32> %1 = "mhlo.dynamic-slice"(%arg0, %arg1, %arg2) {slice_sizes = dense<[1, 4]> : tensor<2xi64>} : (tensor<3x4xi32>, tensor<i64>, tensor<i64>) -> tensor<1x4xi32>
return %1 : tensor<1x4xi32> return %1 : tensor<1x4xi32>
} }
// CHECK-LABEL: dynamic_slice_constant_start // CHECK-LABEL: dynamic_slice_constant_start
func @dynamic_slice_constant_start(%arg0: tensor<4xi32>) -> tensor<2xi32> { func @dynamic_slice_constant_start(%arg0: tensor<4xi32>) -> tensor<2xi32> {
// CHECK: %[[RESULT:.*]] = "xla_hlo.slice"(%arg0) // CHECK: %[[RESULT:.*]] = "mhlo.slice"(%arg0)
// CHECK-DAG-SAME: limit_indices = dense<3> : tensor<1xi64> // CHECK-DAG-SAME: limit_indices = dense<3> : tensor<1xi64>
// CHECK-DAG-SAME: start_indices = dense<1> : tensor<1xi64> // CHECK-DAG-SAME: start_indices = dense<1> : tensor<1xi64>
// CHECK-DAG-SAME: strides = dense<1> : tensor<1xi64>} // CHECK-DAG-SAME: strides = dense<1> : tensor<1xi64>}
// CHECK: return %[[RESULT]] : tensor<2xi32> // CHECK: return %[[RESULT]] : tensor<2xi32>
%0 = xla_hlo.constant dense<1> : tensor<i64> %0 = mhlo.constant dense<1> : tensor<i64>
%1 = "xla_hlo.dynamic-slice"(%arg0, %0) {slice_sizes = dense<2> : tensor<1xi64>} : (tensor<4xi32>, tensor<i64>) -> tensor<2xi32> %1 = "mhlo.dynamic-slice"(%arg0, %0) {slice_sizes = dense<2> : tensor<1xi64>} : (tensor<4xi32>, tensor<i64>) -> tensor<2xi32>
return %1 : tensor<2xi32> return %1 : tensor<2xi32>
} }
// CHECK-LABEL: dynamic_slice_constant_start_dynamic_shape // CHECK-LABEL: dynamic_slice_constant_start_dynamic_shape
func @dynamic_slice_constant_start_dynamic_shape(%arg0: tensor<?x4xi32>, %arg1: tensor<2xi64>) -> tensor<?x4xi32> { func @dynamic_slice_constant_start_dynamic_shape(%arg0: tensor<?x4xi32>, %arg1: tensor<2xi64>) -> tensor<?x4xi32> {
// CHECK: %[[RESULT:.*]] = "xla_hlo.slice"(%arg0) // CHECK: %[[RESULT:.*]] = "mhlo.slice"(%arg0)
// CHECK-DAG-SAME: limit_indices = dense<[2, 4]> : tensor<2xi64> // CHECK-DAG-SAME: limit_indices = dense<[2, 4]> : tensor<2xi64>
// CHECK-DAG-SAME: start_indices = dense<[1, 0]> : tensor<2xi64> // CHECK-DAG-SAME: start_indices = dense<[1, 0]> : tensor<2xi64>
// CHECK-DAG-SAME: strides = dense<1> : tensor<2xi64> // CHECK-DAG-SAME: strides = dense<1> : tensor<2xi64>
// CHECK: return %[[RESULT]] : tensor<?x4xi32> // CHECK: return %[[RESULT]] : tensor<?x4xi32>
%0 = xla_hlo.constant dense<1> : tensor<i64> %0 = mhlo.constant dense<1> : tensor<i64>
%1 = xla_hlo.constant dense<0> : tensor<i64> %1 = mhlo.constant dense<0> : tensor<i64>
%2 = "xla_hlo.dynamic-slice"(%arg0, %0, %1) {slice_sizes = dense<[1, 4]> : tensor<2xi64>} : (tensor<?x4xi32>, tensor<i64>, tensor<i64>) -> tensor<?x4xi32> %2 = "mhlo.dynamic-slice"(%arg0, %0, %1) {slice_sizes = dense<[1, 4]> : tensor<2xi64>} : (tensor<?x4xi32>, tensor<i64>, tensor<i64>) -> tensor<?x4xi32>
return %2 : tensor<?x4xi32> return %2 : tensor<?x4xi32>
} }
// CHECK-LABEL: slice_2D_noop // CHECK-LABEL: slice_2D_noop
// CHECK-SAME: [[ARG:%.+]]: tensor<2x2xi64> // CHECK-SAME: [[ARG:%.+]]: tensor<2x2xi64>
func @slice_2D_noop(%arg0: tensor<2x2xi64>) -> tensor<2x2xi64> { func @slice_2D_noop(%arg0: tensor<2x2xi64>) -> tensor<2x2xi64> {
%0 = "xla_hlo.slice"(%arg0) { limit_indices = dense<[2, 2]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x2xi64>) -> (tensor<2x2xi64>) %0 = "mhlo.slice"(%arg0) { limit_indices = dense<[2, 2]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x2xi64>) -> (tensor<2x2xi64>)
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
return %0 : tensor<2x2xi64> return %0 : tensor<2x2xi64>
@ -234,80 +234,80 @@ func @slice_2D_noop(%arg0: tensor<2x2xi64>) -> tensor<2x2xi64> {
// CHECK-LABEL: slice_1D_fold // CHECK-LABEL: slice_1D_fold
func @slice_1D_fold() -> tensor<2xi64> { func @slice_1D_fold() -> tensor<2xi64> {
%0 = xla_hlo.constant dense<[5, 7, 9, 10]> : tensor<4xi64> %0 = mhlo.constant dense<[5, 7, 9, 10]> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<[7, 9]> // CHECK: mhlo.constant dense<[7, 9]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[3]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4xi64>) -> (tensor<2xi64>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[3]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4xi64>) -> (tensor<2xi64>)
return %1 : tensor<2xi64> return %1 : tensor<2xi64>
} }
// CHECK-LABEL: slice_1D_fp // CHECK-LABEL: slice_1D_fp
func @slice_1D_fp() -> tensor<2xf32> { func @slice_1D_fp() -> tensor<2xf32> {
%0 = xla_hlo.constant dense<[5.0, 7.0, 9.0, 10.0]> : tensor<4xf32> %0 = mhlo.constant dense<[5.0, 7.0, 9.0, 10.0]> : tensor<4xf32>
// CHECK: xla_hlo.constant dense<[7.000000e+00, 9.000000e+00]> // CHECK: mhlo.constant dense<[7.000000e+00, 9.000000e+00]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[3]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4xf32>) -> (tensor<2xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[3]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} : (tensor<4xf32>) -> (tensor<2xf32>)
return %1 : tensor<2xf32> return %1 : tensor<2xf32>
} }
// CHECK-LABEL: slice_1D_strided_fold // CHECK-LABEL: slice_1D_strided_fold
func @slice_1D_strided_fold() -> tensor<2xi64> { func @slice_1D_strided_fold() -> tensor<2xi64> {
%0 = xla_hlo.constant dense<[5, 7, 9, 10]> : tensor<4xi64> %0 = mhlo.constant dense<[5, 7, 9, 10]> : tensor<4xi64>
// CHECK: xla_hlo.constant dense<[7, 10]> // CHECK: mhlo.constant dense<[7, 10]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[4]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<2> : tensor<1xi64>} : (tensor<4xi64>) -> (tensor<2xi64>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[4]> : tensor<1xi64>, start_indices = dense<[1]> : tensor<1xi64>, strides = dense<2> : tensor<1xi64>} : (tensor<4xi64>) -> (tensor<2xi64>)
return %1 : tensor<2xi64> return %1 : tensor<2xi64>
} }
// CHECK-LABEL: slice_2D_fold // CHECK-LABEL: slice_2D_fold
func @slice_2D_fold() -> tensor<2x2xi64> { func @slice_2D_fold() -> tensor<2x2xi64> {
%0 = xla_hlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64> %0 = mhlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64>
// CHECK-NEXT: xla_hlo.constant dense<[ // CHECK-NEXT: mhlo.constant dense<[
// CHECK-SAME: [6, 7], // CHECK-SAME: [6, 7],
// CHECK-SAME: [10, 11] // CHECK-SAME: [10, 11]
// CHECK-SAME: ]> // CHECK-SAME: ]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[3, 4]> : tensor<2xi64>, start_indices = dense<[1, 2]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<2x2xi64>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[3, 4]> : tensor<2xi64>, start_indices = dense<[1, 2]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<2x2xi64>)
return %1 : tensor<2x2xi64> return %1 : tensor<2x2xi64>
} }
// CHECK-LABEL: slice_2D_fold_horizontal // CHECK-LABEL: slice_2D_fold_horizontal
func @slice_2D_fold_horizontal() -> tensor<1x4xi64> { func @slice_2D_fold_horizontal() -> tensor<1x4xi64> {
%0 = xla_hlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64> %0 = mhlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64>
// CHECK-NEXT: xla_hlo.constant dense<[ // CHECK-NEXT: mhlo.constant dense<[
// CHECK-SAME: [0, 1, 2, 3] // CHECK-SAME: [0, 1, 2, 3]
// CHECK-SAME: ]> // CHECK-SAME: ]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[1, 4]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<1x4xi64>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[1, 4]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<1x4xi64>)
return %1 : tensor<1x4xi64> return %1 : tensor<1x4xi64>
} }
// CHECK-LABEL: slice_2D_fold_vertical // CHECK-LABEL: slice_2D_fold_vertical
func @slice_2D_fold_vertical() -> tensor<4x1xi64> { func @slice_2D_fold_vertical() -> tensor<4x1xi64> {
%0 = xla_hlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64> %0 = mhlo.constant dense<[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]> : tensor<4x4xi64>
// CHECK-NEXT: xla_hlo.constant dense<[ // CHECK-NEXT: mhlo.constant dense<[
// CHECK-SAME: [2], [6], [10], [14] // CHECK-SAME: [2], [6], [10], [14]
// CHECK-SAME: ]> // CHECK-SAME: ]>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[4, 3]> : tensor<2xi64>, start_indices = dense<[0, 2]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<4x1xi64>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[4, 3]> : tensor<2xi64>, start_indices = dense<[0, 2]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x4xi64>) -> (tensor<4x1xi64>)
return %1 : tensor<4x1xi64> return %1 : tensor<4x1xi64>
} }
// CHECK-LABEL: slice_concat_fold_first // CHECK-LABEL: slice_concat_fold_first
func @slice_concat_fold_first(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x5xf32> { func @slice_concat_fold_first(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x5xf32> {
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[1, 5]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x5xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[1, 5]> : tensor<2xi64>, start_indices = dense<[0, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x5xf32>)
// CHECK: return %arg0 // CHECK: return %arg0
return %1 : tensor<1x5xf32> return %1 : tensor<1x5xf32>
} }
// CHECK-LABEL: slice_concat_fold_second // CHECK-LABEL: slice_concat_fold_second
func @slice_concat_fold_second(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x5xf32> { func @slice_concat_fold_second(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x5xf32> {
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x5xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x5xf32>)
// CHECK: return %arg1 // CHECK: return %arg1
return %1 : tensor<1x5xf32> return %1 : tensor<1x5xf32>
} }
// CHECK-LABEL: slice_concat_fold_second_with_slice // CHECK-LABEL: slice_concat_fold_second_with_slice
func @slice_concat_fold_second_with_slice(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x4xf32> { func @slice_concat_fold_second_with_slice(%arg0: tensor<1x5xf32>, %arg1: tensor<1x5xf32>) -> tensor<1x4xf32> {
%0 = "xla_hlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32> %0 = "mhlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<1x5xf32>) -> tensor<2x5xf32>
// CHECK: [[SLICE:%.+]] = "xla_hlo.slice"(%arg1) {limit_indices = dense<[1, 5]> : tensor<2xi64>, start_indices = dense<[0, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<1x5xf32>) -> tensor<1x4xf32> // CHECK: [[SLICE:%.+]] = "mhlo.slice"(%arg1) {limit_indices = dense<[1, 5]> : tensor<2xi64>, start_indices = dense<[0, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<1x5xf32>) -> tensor<1x4xf32>
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x4xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 1]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<2x5xf32>) -> (tensor<1x4xf32>)
// CHECK: return [[SLICE]] // CHECK: return [[SLICE]]
return %1 : tensor<1x4xf32> return %1 : tensor<1x4xf32>
@ -315,9 +315,9 @@ func @slice_concat_fold_second_with_slice(%arg0: tensor<1x5xf32>, %arg1: tensor<
// CHECK-LABEL: slice_concat_fold_middle // CHECK-LABEL: slice_concat_fold_middle
func @slice_concat_fold_middle(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %arg2: tensor<1x5xf32>) -> tensor<1x5xf32> { func @slice_concat_fold_middle(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %arg2: tensor<1x5xf32>) -> tensor<1x5xf32> {
%0 = "xla_hlo.concatenate"(%arg0, %arg1, %arg2) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<2x5xf32>, tensor<1x5xf32>) -> tensor<4x5xf32> %0 = "mhlo.concatenate"(%arg0, %arg1, %arg2) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<2x5xf32>, tensor<1x5xf32>) -> tensor<4x5xf32>
// CHECK: [[SLICE:%.+]] = "xla_hlo.slice"(%arg1) {limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK: [[SLICE:%.+]] = "mhlo.slice"(%arg1) {limit_indices = dense<[2, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>}
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[3, 5]> : tensor<2xi64>, start_indices = dense<[2, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x5xf32>) -> (tensor<1x5xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[3, 5]> : tensor<2xi64>, start_indices = dense<[2, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x5xf32>) -> (tensor<1x5xf32>)
// CHECK: return [[SLICE]] // CHECK: return [[SLICE]]
return %1 : tensor<1x5xf32> return %1 : tensor<1x5xf32>
@ -325,11 +325,11 @@ func @slice_concat_fold_middle(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %
// CHECK-LABEL: slice_concat_fold_two // CHECK-LABEL: slice_concat_fold_two
func @slice_concat_fold_two(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %arg2: tensor<1x5xf32>) -> tensor<2x5xf32> { func @slice_concat_fold_two(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %arg2: tensor<1x5xf32>) -> tensor<2x5xf32> {
// CHECK: [[CONCAT:%.+]] = "xla_hlo.concatenate"(%arg1, %arg2) {dimension = 0 : i64} // CHECK: [[CONCAT:%.+]] = "mhlo.concatenate"(%arg1, %arg2) {dimension = 0 : i64}
%0 = "xla_hlo.concatenate"(%arg0, %arg1, %arg2) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<2x5xf32>, tensor<1x5xf32>) -> tensor<4x5xf32> %0 = "mhlo.concatenate"(%arg0, %arg1, %arg2) { dimension = 0 : i64 } : (tensor<1x5xf32>, tensor<2x5xf32>, tensor<1x5xf32>) -> tensor<4x5xf32>
// CHECK: [[SLICE:%.+]] = "xla_hlo.slice"([[CONCAT]]) {limit_indices = dense<[3, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK: [[SLICE:%.+]] = "mhlo.slice"([[CONCAT]]) {limit_indices = dense<[3, 5]> : tensor<2xi64>, start_indices = dense<[1, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>}
%1 = "xla_hlo.slice"(%0) { limit_indices = dense<[4, 5]> : tensor<2xi64>, start_indices = dense<[2, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x5xf32>) -> (tensor<2x5xf32>) %1 = "mhlo.slice"(%0) { limit_indices = dense<[4, 5]> : tensor<2xi64>, start_indices = dense<[2, 0]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<4x5xf32>) -> (tensor<2x5xf32>)
// CHECK: return [[SLICE]] // CHECK: return [[SLICE]]
return %1 : tensor<2x5xf32> return %1 : tensor<2x5xf32>
@ -338,72 +338,72 @@ func @slice_concat_fold_two(%arg0: tensor<1x5xf32>, %arg1: tensor<2x5xf32>, %arg
// CHECK-LABEL: func @broadcast_in_dim_identity // CHECK-LABEL: func @broadcast_in_dim_identity
func @broadcast_in_dim_identity(%arg0: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> { func @broadcast_in_dim_identity(%arg0: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
// CHECK: return %arg0 // CHECK: return %arg0
%0 = "xla_hlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x3x4xf32>) -> tensor<2x3x4xf32> %0 = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<2x3x4xf32>) -> tensor<2x3x4xf32>
return %0 : tensor<2x3x4xf32> return %0 : tensor<2x3x4xf32>
} }
// CHECK-LABEL: func @broadcast_in_dim_not_identity_because_it_actually_broadcasts // CHECK-LABEL: func @broadcast_in_dim_not_identity_because_it_actually_broadcasts
func @broadcast_in_dim_not_identity_because_it_actually_broadcasts(%arg0: tensor<1x2xf32>) -> tensor<2x2xf32> { func @broadcast_in_dim_not_identity_because_it_actually_broadcasts(%arg0: tensor<1x2xf32>) -> tensor<2x2xf32> {
// CHECK: xla_hlo.broadcast_in_dim // CHECK: mhlo.broadcast_in_dim
%0 = "xla_hlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<1x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
// CHECK-LABEL: func @broadcast_in_dim_not_identity_permutation // CHECK-LABEL: func @broadcast_in_dim_not_identity_permutation
func @broadcast_in_dim_not_identity_permutation(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @broadcast_in_dim_not_identity_permutation(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: xla_hlo.broadcast_in_dim // CHECK: mhlo.broadcast_in_dim
%0 = "xla_hlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
// CHECK-LABEL: func @dynamic_broadcast_in_dim_op_not_actually_dynamic // CHECK-LABEL: func @dynamic_broadcast_in_dim_op_not_actually_dynamic
func @dynamic_broadcast_in_dim_op_not_actually_dynamic(%arg0: tensor<4xf32>, %arg1: tensor<2xi64>) -> tensor<5x4xf32> { func @dynamic_broadcast_in_dim_op_not_actually_dynamic(%arg0: tensor<4xf32>, %arg1: tensor<2xi64>) -> tensor<5x4xf32> {
// CHECK: %[[RESULT:.+]] = "xla_hlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<4xf32>) -> tensor<5x4xf32> // CHECK: %[[RESULT:.+]] = "mhlo.broadcast_in_dim"(%arg0) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<4xf32>) -> tensor<5x4xf32>
%0 = "xla_hlo.dynamic_broadcast_in_dim"(%arg0, %arg1) { broadcast_dimensions = dense<1> : tensor<1xi64> } : (tensor<4xf32>, tensor<2xi64>) -> tensor<5x4xf32> %0 = "mhlo.dynamic_broadcast_in_dim"(%arg0, %arg1) { broadcast_dimensions = dense<1> : tensor<1xi64> } : (tensor<4xf32>, tensor<2xi64>) -> tensor<5x4xf32>
// CHECK: return %[[RESULT]] : tensor<5x4xf32> // CHECK: return %[[RESULT]] : tensor<5x4xf32>
return %0 : tensor<5x4xf32> return %0 : tensor<5x4xf32>
} }
// CHECK-LABEL: @complex_expand_fold // CHECK-LABEL: @complex_expand_fold
func @complex_expand_fold(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) { func @complex_expand_fold(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> (tensor<4xf32>, tensor<4xf32>) {
%0 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> (tensor<4xcomplex<f32>>) %0 = "mhlo.complex"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> (tensor<4xcomplex<f32>>)
%1 = "xla_hlo.real"(%0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>) %1 = "mhlo.real"(%0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>)
%2 = "xla_hlo.imag"(%0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>) %2 = "mhlo.imag"(%0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>)
// CHECK: return %arg0, %arg1 // CHECK: return %arg0, %arg1
return %1, %2 : tensor<4xf32>, tensor<4xf32> return %1, %2 : tensor<4xf32>, tensor<4xf32>
} }
// CHECK-LABEL: @complex_collapse_fold // CHECK-LABEL: @complex_collapse_fold
func @complex_collapse_fold(%arg0: tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>> { func @complex_collapse_fold(%arg0: tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>> {
%0 = "xla_hlo.real"(%arg0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>) %0 = "mhlo.real"(%arg0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>)
%1 = "xla_hlo.imag"(%arg0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>) %1 = "mhlo.imag"(%arg0) : (tensor<4xcomplex<f32>>) -> (tensor<4xf32>)
%2 = "xla_hlo.complex"(%0, %1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>> %2 = "mhlo.complex"(%0, %1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>>
// CHECK: return %arg0 // CHECK: return %arg0
return %2 : tensor<4xcomplex<f32>> return %2 : tensor<4xcomplex<f32>>
} }
// CHECK-LABEL: @dynamic_iota_is_static // CHECK-LABEL: @dynamic_iota_is_static
func @dynamic_iota_is_static(%arg0 : tensor<1xindex>) -> tensor<4xi32> { func @dynamic_iota_is_static(%arg0 : tensor<1xindex>) -> tensor<4xi32> {
// CHECK: [[RESULT:%.*]] = "xla_hlo.iota" // CHECK: [[RESULT:%.*]] = "mhlo.iota"
// CHECK: return [[RESULT]] // CHECK: return [[RESULT]]
%0 = "xla_hlo.dynamic_iota"(%arg0) {iota_dimension = 0 : i64} : (tensor<1xindex>) -> tensor<4xi32> %0 = "mhlo.dynamic_iota"(%arg0) {iota_dimension = 0 : i64} : (tensor<1xindex>) -> tensor<4xi32>
return %0 : tensor<4xi32> return %0 : tensor<4xi32>
} }
// CHECK-LABEL: @iota_not_lowered_to_constant // CHECK-LABEL: @iota_not_lowered_to_constant
func @iota_not_lowered_to_constant() -> tensor<4xi32> { func @iota_not_lowered_to_constant() -> tensor<4xi32> {
// CHECK: [[RESULT:%.*]] = "xla_hlo.iota" // CHECK: [[RESULT:%.*]] = "mhlo.iota"
// CHECK: return [[RESULT]] // CHECK: return [[RESULT]]
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xi32> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xi32>
return %0 : tensor<4xi32> return %0 : tensor<4xi32>
} }
// CHECK-LABEL: @unary_einsum // CHECK-LABEL: @unary_einsum
func @unary_einsum(%arg0: tensor<2x3xf32>) -> tensor<2x2xf32> { func @unary_einsum(%arg0: tensor<2x3xf32>) -> tensor<2x2xf32> {
// CHECK: %[[ONE:.*]] = xla_hlo.constant dense<1.000000e+00> : tensor<f32> // CHECK: %[[ONE:.*]] = mhlo.constant dense<1.000000e+00> : tensor<f32>
// CHECK: "xla_hlo.einsum"(%[[ONE]], %arg0) {einsum_config = ",ab->aa"} // CHECK: "mhlo.einsum"(%[[ONE]], %arg0) {einsum_config = ",ab->aa"}
%0 = "xla_hlo.unary_einsum"(%arg0) {einsum_config = "ab->aa"} : (tensor<2x3xf32>) -> tensor<2x2xf32> %0 = "mhlo.unary_einsum"(%arg0) {einsum_config = "ab->aa"} : (tensor<2x3xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -411,30 +411,30 @@ func @unary_einsum(%arg0: tensor<2x3xf32>) -> tensor<2x2xf32> {
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @fold_copy(%arg : tensor<1x4xf32>) -> tensor<1x4xf32> { func @fold_copy(%arg : tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK: return [[ARG]] // CHECK: return [[ARG]]
%0 = "xla_hlo.copy"(%arg) : (tensor<1x4xf32>) -> tensor<1x4xf32> %0 = "mhlo.copy"(%arg) : (tensor<1x4xf32>) -> tensor<1x4xf32>
return %0 : tensor<1x4xf32> return %0 : tensor<1x4xf32>
} }
// CHECK-LABEL: func @dynamic_reshape_not_actually_dynamic // CHECK-LABEL: func @dynamic_reshape_not_actually_dynamic
func @dynamic_reshape_not_actually_dynamic(%arg0: tensor<4xf32>, %shape: tensor<2xindex>) -> tensor<4x1xf32> { func @dynamic_reshape_not_actually_dynamic(%arg0: tensor<4xf32>, %shape: tensor<2xindex>) -> tensor<4x1xf32> {
// CHECK: xla_hlo.reshape // CHECK: mhlo.reshape
%0 = "xla_hlo.dynamic_reshape"(%arg0, %shape) : (tensor<4xf32>, tensor<2xindex>) -> tensor<4x1xf32> %0 = "mhlo.dynamic_reshape"(%arg0, %shape) : (tensor<4xf32>, tensor<2xindex>) -> tensor<4x1xf32>
return %0 : tensor<4x1xf32> return %0 : tensor<4x1xf32>
} }
// CHECK-LABEL: do_not_dce_while_with_outfeed // CHECK-LABEL: do_not_dce_while_with_outfeed
func @do_not_dce_while_with_outfeed(%arg0: tensor<i64>) -> tensor<i64> { func @do_not_dce_while_with_outfeed(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK: xla_hlo.while // CHECK: mhlo.while
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = "xla_hlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = "xla_hlo.create_token"() : () -> !xla_hlo.token %1 = "mhlo.create_token"() : () -> !mhlo.token
// Side-effecting op outfeed present inside while. // Side-effecting op outfeed present inside while.
%2 = "xla_hlo.outfeed"(%arg1, %1) {outfeed_config = ""} : (tensor<i64>, !xla_hlo.token) -> !xla_hlo.token %2 = "mhlo.outfeed"(%arg1, %1) {outfeed_config = ""} : (tensor<i64>, !mhlo.token) -> !mhlo.token
"xla_hlo.return"(%arg1) : (tensor<i64>) -> () "mhlo.return"(%arg1) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
return %arg0 : tensor<i64> return %arg0 : tensor<i64>
@ -442,15 +442,15 @@ func @do_not_dce_while_with_outfeed(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK-LABEL: dce_while_without_side_effect // CHECK-LABEL: dce_while_without_side_effect
func @dce_while_without_side_effect(%arg0: tensor<i64>) -> tensor<i64> { func @dce_while_without_side_effect(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK-NOT: xla_hlo.while // CHECK-NOT: mhlo.while
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = "xla_hlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = "xla_hlo.create_token"() : () -> !xla_hlo.token %1 = "mhlo.create_token"() : () -> !mhlo.token
"xla_hlo.return"(%arg1) : (tensor<i64>) -> () "mhlo.return"(%arg1) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
return %arg0 : tensor<i64> return %arg0 : tensor<i64>

View File

@ -4,7 +4,7 @@
// representative op for detailed broadcast semantics. // representative op for detailed broadcast semantics.
// CHECK-LABEL: @addWithoutBroadcast // CHECK-LABEL: @addWithoutBroadcast
func @addWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @addWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.add %arg0, %arg1 // CHECK: mhlo.add %arg0, %arg1
%0 = xla_chlo.broadcast_add %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_add %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -20,9 +20,9 @@ func @dynamicBroadcast(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]] // CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
// CHECK-DAG: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]]) // CHECK-DAG: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]])
// CHECK: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]] // CHECK: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]]
// CHECK-DAG: %[[ARG0_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} // CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>}
// CHECK-DAG: %[[ARG1_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} // CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>}
// CHECK-NEXT: %[[RESULT:.+]] = xla_hlo.add %[[ARG0_B]], %[[ARG1_B]] // CHECK-NEXT: %[[RESULT:.+]] = mhlo.add %[[ARG0_B]], %[[ARG1_B]]
// CHECK-NEXT: shape.assuming_yield %[[RESULT]] // CHECK-NEXT: shape.assuming_yield %[[RESULT]]
// CHECK-NEXT: } // CHECK-NEXT: }
// CHECK-NEXT: return %[[FINAL_RESULT]] : tensor<?x?xf32> // CHECK-NEXT: return %[[FINAL_RESULT]] : tensor<?x?xf32>
@ -41,9 +41,9 @@ func @dynamicBroadcastComplex(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> t
// CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]] // CHECK-NEXT: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
// CHECK-NEXT: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]]) // CHECK-NEXT: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]])
// CHECK-NEXT: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]] // CHECK-NEXT: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]]
// CHECK-DAG: %[[ARG0_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32> // CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-DAG: %[[ARG1_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32> // CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-NEXT: %[[RESULT:.+]] = "xla_hlo.complex"(%[[ARG0_B]], %[[ARG1_B]]) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xcomplex<f32>> // CHECK-NEXT: %[[RESULT:.+]] = "mhlo.complex"(%[[ARG0_B]], %[[ARG1_B]]) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xcomplex<f32>>
// CHECK-NEXT: shape.assuming_yield %[[RESULT]] // CHECK-NEXT: shape.assuming_yield %[[RESULT]]
// CHECK-NEXT: } // CHECK-NEXT: }
// CHECK-NEXT: return %[[FINAL_RESULT]] : tensor<?x?xcomplex<f32>> // CHECK-NEXT: return %[[FINAL_RESULT]] : tensor<?x?xcomplex<f32>>
@ -62,9 +62,9 @@ func @dynamicBroadcastCompare(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> t
// CHECK: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]] // CHECK: %[[FINAL_RESULT:.+]] = shape.assuming %[[WITNESS]]
// CHECK: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]]) // CHECK: %[[RESULT_S:.+]] = "shape.broadcast"(%[[ARG0_S]], %[[ARG1_S]])
// CHECK: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]] // CHECK: %[[RESULT_EXTENTS:.+]] = shape.to_extent_tensor %[[RESULT_S]]
// CHECK-DAG: %[[ARG0_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32> // CHECK-DAG: %[[ARG0_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG0]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK-DAG: %[[ARG1_B:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32> // CHECK-DAG: %[[ARG1_B:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[ARG1]], %[[RESULT_EXTENTS]]) {broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>} : (tensor<?x?xf32>, tensor<2xindex>) -> tensor<?x?xf32>
// CHECK: %[[RESULT:.+]] = "xla_hlo.compare"(%[[ARG0_B]], %[[ARG1_B]]) {comparison_direction = "EQ"} : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xi1> // CHECK: %[[RESULT:.+]] = "mhlo.compare"(%[[ARG0_B]], %[[ARG1_B]]) {comparison_direction = "EQ"} : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xi1>
// CHECK: shape.assuming_yield %[[RESULT]] // CHECK: shape.assuming_yield %[[RESULT]]
// CHECK-NEXT: } // CHECK-NEXT: }
// CHECK: return %[[FINAL_RESULT]] : tensor<?x?xi1> // CHECK: return %[[FINAL_RESULT]] : tensor<?x?xi1>
@ -76,7 +76,7 @@ func @dynamicBroadcastCompare(%arg0: tensor<?xf32>, %arg1: tensor<?x?xf32>) -> t
// Verifies that broadcast_dimensions validity checks are valid. // Verifies that broadcast_dimensions validity checks are valid.
// CHECK-LABEL: @dynamicNonScalarBroadcastDimensions // CHECK-LABEL: @dynamicNonScalarBroadcastDimensions
func @dynamicNonScalarBroadcastDimensions(%arg0: tensor<1x4xf32>, %arg1: tensor<4xf32>) -> tensor<1x4xf32> { func @dynamicNonScalarBroadcastDimensions(%arg0: tensor<1x4xf32>, %arg1: tensor<4xf32>) -> tensor<1x4xf32> {
// CHECK: xla_hlo.add // CHECK: mhlo.add
%0 = xla_chlo.broadcast_add %arg0, %arg1 {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<1x4xf32>, tensor<4xf32>) -> tensor<1x4xf32> %0 = xla_chlo.broadcast_add %arg0, %arg1 {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<1x4xf32>, tensor<4xf32>) -> tensor<1x4xf32>
return %0 : tensor<1x4xf32> return %0 : tensor<1x4xf32>
} }
@ -85,7 +85,7 @@ func @dynamicNonScalarBroadcastDimensions(%arg0: tensor<1x4xf32>, %arg1: tensor<
// Verifies that broadcast_dimensions validity checks are valid. // Verifies that broadcast_dimensions validity checks are valid.
// CHECK-LABEL: @dynamicNonScalarByScalarBroadcastDimensions // CHECK-LABEL: @dynamicNonScalarByScalarBroadcastDimensions
func @dynamicNonScalarByScalarBroadcastDimensions(%arg0: tensor<1x4xf32>, %arg1: tensor<f32>) -> tensor<1x4xf32> { func @dynamicNonScalarByScalarBroadcastDimensions(%arg0: tensor<1x4xf32>, %arg1: tensor<f32>) -> tensor<1x4xf32> {
// CHECK: xla_hlo.add // CHECK: mhlo.add
%0 = xla_chlo.broadcast_add %arg0, %arg1 {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<1x4xf32>, tensor<f32>) -> tensor<1x4xf32> %0 = xla_chlo.broadcast_add %arg0, %arg1 {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<1x4xf32>, tensor<f32>) -> tensor<1x4xf32>
return %0 : tensor<1x4xf32> return %0 : tensor<1x4xf32>
} }
@ -113,7 +113,7 @@ func @dynamicNonScalarBroadcastDimensionsMismatch(%arg0: tensor<1x4xf32>, %arg1:
// expansions. Tests below merely verify that the op has an expansion. // expansions. Tests below merely verify that the op has an expansion.
// CHECK-LABEL: @andWithoutBroadcast // CHECK-LABEL: @andWithoutBroadcast
func @andWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> { func @andWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> {
// CHECK: xla_hlo.and %arg0, %arg1 // CHECK: mhlo.and %arg0, %arg1
%0 = xla_chlo.broadcast_and %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1> %0 = xla_chlo.broadcast_and %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1>
return %0 : tensor<4xi1> return %0 : tensor<4xi1>
} }
@ -121,7 +121,7 @@ func @andWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4x
// ----- // -----
// CHECK-LABEL: @atan2WithoutBroadcast // CHECK-LABEL: @atan2WithoutBroadcast
func @atan2WithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @atan2WithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.atan2 %arg0, %arg1 // CHECK: mhlo.atan2 %arg0, %arg1
%0 = xla_chlo.broadcast_atan2 %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_atan2 %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -129,7 +129,7 @@ func @atan2WithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tenso
// ----- // -----
// CHECK-LABEL: @compareWithoutBroadcast // CHECK-LABEL: @compareWithoutBroadcast
func @compareWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xi1> { func @compareWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xi1> {
// CHECK: "xla_hlo.compare"(%arg0, %arg1) {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> // CHECK: "mhlo.compare"(%arg0, %arg1) {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
%0 = xla_chlo.broadcast_compare %arg0, %arg1 {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %0 = xla_chlo.broadcast_compare %arg0, %arg1 {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
return %0 : tensor<4xi1> return %0 : tensor<4xi1>
} }
@ -137,7 +137,7 @@ func @compareWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> ten
// ----- // -----
// CHECK-LABEL: @complexWithoutBroadcast // CHECK-LABEL: @complexWithoutBroadcast
func @complexWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xcomplex<f32>> { func @complexWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xcomplex<f32>> {
// CHECK: "xla_hlo.complex"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>> // CHECK: "mhlo.complex"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>>
%0 = xla_chlo.broadcast_complex %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>> %0 = xla_chlo.broadcast_complex %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xcomplex<f32>>
return %0 : tensor<4xcomplex<f32>> return %0 : tensor<4xcomplex<f32>>
} }
@ -145,7 +145,7 @@ func @complexWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> ten
// ----- // -----
// CHECK-LABEL: @divideWithoutBroadcast // CHECK-LABEL: @divideWithoutBroadcast
func @divideWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @divideWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.divide %arg0, %arg1 // CHECK: mhlo.divide %arg0, %arg1
%0 = xla_chlo.broadcast_divide %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_divide %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -153,7 +153,7 @@ func @divideWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tens
// ----- // -----
// CHECK-LABEL: @maximumWithoutBroadcast // CHECK-LABEL: @maximumWithoutBroadcast
func @maximumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @maximumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.maximum %arg0, %arg1 // CHECK: mhlo.maximum %arg0, %arg1
%0 = xla_chlo.broadcast_maximum %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_maximum %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -161,7 +161,7 @@ func @maximumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> ten
// ----- // -----
// CHECK-LABEL: @minimumWithoutBroadcast // CHECK-LABEL: @minimumWithoutBroadcast
func @minimumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @minimumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.minimum %arg0, %arg1 // CHECK: mhlo.minimum %arg0, %arg1
%0 = xla_chlo.broadcast_minimum %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_minimum %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -169,7 +169,7 @@ func @minimumWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> ten
// ----- // -----
// CHECK-LABEL: @multiplyWithoutBroadcast // CHECK-LABEL: @multiplyWithoutBroadcast
func @multiplyWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @multiplyWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.multiply %arg0, %arg1 // CHECK: mhlo.multiply %arg0, %arg1
%0 = xla_chlo.broadcast_multiply %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_multiply %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -177,7 +177,7 @@ func @multiplyWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> te
// ----- // -----
// CHECK-LABEL: @orWithoutBroadcast // CHECK-LABEL: @orWithoutBroadcast
func @orWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> { func @orWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> {
// CHECK: xla_hlo.or %arg0, %arg1 // CHECK: mhlo.or %arg0, %arg1
%0 = xla_chlo.broadcast_or %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1> %0 = xla_chlo.broadcast_or %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1>
return %0 : tensor<4xi1> return %0 : tensor<4xi1>
} }
@ -185,7 +185,7 @@ func @orWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi
// ----- // -----
// CHECK-LABEL: @powerWithoutBroadcast // CHECK-LABEL: @powerWithoutBroadcast
func @powerWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @powerWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.power %arg0, %arg1 // CHECK: mhlo.power %arg0, %arg1
%0 = xla_chlo.broadcast_power %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_power %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -193,7 +193,7 @@ func @powerWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tenso
// ----- // -----
// CHECK-LABEL: @remainderWithoutBroadcast // CHECK-LABEL: @remainderWithoutBroadcast
func @remainderWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @remainderWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.remainder %arg0, %arg1 // CHECK: mhlo.remainder %arg0, %arg1
%0 = xla_chlo.broadcast_remainder %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_remainder %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -201,7 +201,7 @@ func @remainderWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> t
// ----- // -----
// CHECK-LABEL: @shift_leftWithoutBroadcast // CHECK-LABEL: @shift_leftWithoutBroadcast
func @shift_leftWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @shift_leftWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.shift_left %arg0, %arg1 // CHECK: mhlo.shift_left %arg0, %arg1
%0 = xla_chlo.broadcast_shift_left %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_shift_left %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -209,7 +209,7 @@ func @shift_leftWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) ->
// ----- // -----
// CHECK-LABEL: @shift_right_arithmeticWithoutBroadcast // CHECK-LABEL: @shift_right_arithmeticWithoutBroadcast
func @shift_right_arithmeticWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @shift_right_arithmeticWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.shift_right_arithmetic %arg0, %arg1 // CHECK: mhlo.shift_right_arithmetic %arg0, %arg1
%0 = xla_chlo.broadcast_shift_right_arithmetic %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_shift_right_arithmetic %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -217,7 +217,7 @@ func @shift_right_arithmeticWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor
// ----- // -----
// CHECK-LABEL: @shift_right_logicalWithoutBroadcast // CHECK-LABEL: @shift_right_logicalWithoutBroadcast
func @shift_right_logicalWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @shift_right_logicalWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.shift_right_logical %arg0, %arg1 // CHECK: mhlo.shift_right_logical %arg0, %arg1
%0 = xla_chlo.broadcast_shift_right_logical %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_shift_right_logical %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -225,7 +225,7 @@ func @shift_right_logicalWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4x
// ----- // -----
// CHECK-LABEL: @subWithoutBroadcast // CHECK-LABEL: @subWithoutBroadcast
func @subWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @subWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK: xla_hlo.subtract %arg0, %arg1 // CHECK: mhlo.subtract %arg0, %arg1
%0 = xla_chlo.broadcast_subtract %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = xla_chlo.broadcast_subtract %arg0, %arg1 : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -233,7 +233,7 @@ func @subWithoutBroadcast(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<
// ----- // -----
// CHECK-LABEL: @xorWithoutBroadcast // CHECK-LABEL: @xorWithoutBroadcast
func @xorWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> { func @xorWithoutBroadcast(%arg0: tensor<4xi1>, %arg1: tensor<4xi1>) -> tensor<4xi1> {
// CHECK: xla_hlo.xor %arg0, %arg1 // CHECK: mhlo.xor %arg0, %arg1
%0 = xla_chlo.broadcast_xor %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1> %0 = xla_chlo.broadcast_xor %arg0, %arg1 : (tensor<4xi1>, tensor<4xi1>) -> tensor<4xi1>
return %0 : tensor<4xi1> return %0 : tensor<4xi1>
} }

View File

@ -3,7 +3,7 @@
// CHECK-LABEL: func @single_operand // CHECK-LABEL: func @single_operand
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @single_operand(%arg: tensor<1x2xf32>) -> tensor<1x2xf32> { func @single_operand(%arg: tensor<1x2xf32>) -> tensor<1x2xf32> {
%0 = "xla_hlo.concatenate"(%arg) {dimension = 0 : i64} : (tensor<1x2xf32>) -> tensor<1x2xf32> %0 = "mhlo.concatenate"(%arg) {dimension = 0 : i64} : (tensor<1x2xf32>) -> tensor<1x2xf32>
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
return %0 : tensor<1x2xf32> return %0 : tensor<1x2xf32>
} }

View File

@ -5,7 +5,7 @@
// CHECK-LABEL: func @same_type // CHECK-LABEL: func @same_type
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @same_type(%arg: tensor<f32>) -> tensor<f32> { func @same_type(%arg: tensor<f32>) -> tensor<f32> {
%0 = "xla_hlo.convert"(%arg) : (tensor<f32>) -> tensor<f32> %0 = "mhlo.convert"(%arg) : (tensor<f32>) -> tensor<f32>
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
return %0 : tensor<f32> return %0 : tensor<f32>
} }
@ -15,8 +15,8 @@ func @same_type(%arg: tensor<f32>) -> tensor<f32> {
// CHECK-LABEL: func @int_widening // CHECK-LABEL: func @int_widening
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @int_widening(%arg: tensor<i32>) -> tensor<i64> { func @int_widening(%arg: tensor<i32>) -> tensor<i64> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<i64> // CHECK-NEXT: [[RES:%.+]] = "mhlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<i64>
%0 = "xla_hlo.convert"(%arg) : (tensor<i32>) -> tensor<i64> %0 = "mhlo.convert"(%arg) : (tensor<i32>) -> tensor<i64>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %0 : tensor<i64> return %0 : tensor<i64>
} }
@ -26,8 +26,8 @@ func @int_widening(%arg: tensor<i32>) -> tensor<i64> {
// CHECK-LABEL: func @int_narrowing // CHECK-LABEL: func @int_narrowing
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @int_narrowing(%arg: tensor<i32>) -> tensor<i16> { func @int_narrowing(%arg: tensor<i32>) -> tensor<i16> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<i16> // CHECK-NEXT: [[RES:%.+]] = "mhlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<i16>
%0 = "xla_hlo.convert"(%arg) : (tensor<i32>) -> tensor<i16> %0 = "mhlo.convert"(%arg) : (tensor<i32>) -> tensor<i16>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %0 : tensor<i16> return %0 : tensor<i16>
} }
@ -37,8 +37,8 @@ func @int_narrowing(%arg: tensor<i32>) -> tensor<i16> {
// CHECK-LABEL: func @float_int // CHECK-LABEL: func @float_int
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @float_int(%arg: tensor<f32>) -> tensor<i32> { func @float_int(%arg: tensor<f32>) -> tensor<i32> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.convert"([[ARG]]) : (tensor<f32>) -> tensor<i32> // CHECK-NEXT: [[RES:%.+]] = "mhlo.convert"([[ARG]]) : (tensor<f32>) -> tensor<i32>
%0 = "xla_hlo.convert"(%arg) : (tensor<f32>) -> tensor<i32> %0 = "mhlo.convert"(%arg) : (tensor<f32>) -> tensor<i32>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %0 : tensor<i32> return %0 : tensor<i32>
} }
@ -48,8 +48,8 @@ func @float_int(%arg: tensor<f32>) -> tensor<i32> {
// CHECK-LABEL: func @int_float // CHECK-LABEL: func @int_float
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @int_float(%arg: tensor<i32>) -> tensor<f32> { func @int_float(%arg: tensor<i32>) -> tensor<f32> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<f32> // CHECK-NEXT: [[RES:%.+]] = "mhlo.convert"([[ARG]]) : (tensor<i32>) -> tensor<f32>
%0 = "xla_hlo.convert"(%arg) : (tensor<i32>) -> tensor<f32> %0 = "mhlo.convert"(%arg) : (tensor<i32>) -> tensor<f32>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %0 : tensor<f32> return %0 : tensor<f32>
} }
@ -59,8 +59,8 @@ func @int_float(%arg: tensor<i32>) -> tensor<f32> {
// CHECK-LABEL: func @high_rank_tensor // CHECK-LABEL: func @high_rank_tensor
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @high_rank_tensor(%arg: tensor<2x3xi32>) -> tensor<2x3xf32> { func @high_rank_tensor(%arg: tensor<2x3xi32>) -> tensor<2x3xf32> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.convert"([[ARG]]) : (tensor<2x3xi32>) -> tensor<2x3xf32> // CHECK-NEXT: [[RES:%.+]] = "mhlo.convert"([[ARG]]) : (tensor<2x3xi32>) -> tensor<2x3xf32>
%0 = "xla_hlo.convert"(%arg) : (tensor<2x3xi32>) -> tensor<2x3xf32> %0 = "mhlo.convert"(%arg) : (tensor<2x3xi32>) -> tensor<2x3xf32>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %0 : tensor<2x3xf32> return %0 : tensor<2x3xf32>
} }
@ -70,9 +70,9 @@ func @high_rank_tensor(%arg: tensor<2x3xi32>) -> tensor<2x3xf32> {
// CHECK-LABEL: func @const_same_type // CHECK-LABEL: func @const_same_type
func @const_same_type() -> tensor<i32> { func @const_same_type() -> tensor<i32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32>
%cst = xla_hlo.constant dense<42> : tensor<i32> %cst = mhlo.constant dense<42> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<i32> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<i32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i32> return %0 : tensor<i32>
} }
@ -81,9 +81,9 @@ func @const_same_type() -> tensor<i32> {
// CHECK-LABEL: func @const_float_int // CHECK-LABEL: func @const_float_int
func @const_float_int() -> tensor<i32> { func @const_float_int() -> tensor<i32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32>
%cst = xla_hlo.constant dense<42.0> : tensor<f32> %cst = mhlo.constant dense<42.0> : tensor<f32>
%0 = "xla_hlo.convert"(%cst) : (tensor<f32>) -> tensor<i32> %0 = "mhlo.convert"(%cst) : (tensor<f32>) -> tensor<i32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i32> return %0 : tensor<i32>
} }
@ -92,9 +92,9 @@ func @const_float_int() -> tensor<i32> {
// CHECK-LABEL: func @const_int_float // CHECK-LABEL: func @const_int_float
func @const_int_float() -> tensor<f32> { func @const_int_float() -> tensor<f32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.{{0*}}e+00> : tensor<f32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.{{0*}}e+00> : tensor<f32>
%cst = xla_hlo.constant dense<4> : tensor<i32> %cst = mhlo.constant dense<4> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<f32> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<f32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<f32> return %0 : tensor<f32>
} }
@ -103,9 +103,9 @@ func @const_int_float() -> tensor<f32> {
// CHECK-LABEL: func @const_negative_int_float // CHECK-LABEL: func @const_negative_int_float
func @const_negative_int_float() -> tensor<f32> { func @const_negative_int_float() -> tensor<f32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<-4.{{0*}}e+00> : tensor<f32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<-4.{{0*}}e+00> : tensor<f32>
%cst = xla_hlo.constant dense<-4> : tensor<i32> %cst = mhlo.constant dense<-4> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<f32> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<f32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<f32> return %0 : tensor<f32>
} }
@ -114,9 +114,9 @@ func @const_negative_int_float() -> tensor<f32> {
// CHECK-LABEL: func @const_int_bf16 // CHECK-LABEL: func @const_int_bf16
func @const_int_bf16() -> tensor<bf16> { func @const_int_bf16() -> tensor<bf16> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.{{0*}}e+00> : tensor<bf16> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.{{0*}}e+00> : tensor<bf16>
%cst = xla_hlo.constant dense<4> : tensor<i32> %cst = mhlo.constant dense<4> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<bf16> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<bf16>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<bf16> return %0 : tensor<bf16>
} }
@ -125,9 +125,9 @@ func @const_int_bf16() -> tensor<bf16> {
// CHECK-LABEL: func @const_bf16_int // CHECK-LABEL: func @const_bf16_int
func @const_bf16_int() -> tensor<i16> { func @const_bf16_int() -> tensor<i16> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i16> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i16>
%cst = xla_hlo.constant dense<42.0> : tensor<bf16> %cst = mhlo.constant dense<42.0> : tensor<bf16>
%0 = "xla_hlo.convert"(%cst) : (tensor<bf16>) -> tensor<i16> %0 = "mhlo.convert"(%cst) : (tensor<bf16>) -> tensor<i16>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i16> return %0 : tensor<i16>
} }
@ -136,9 +136,9 @@ func @const_bf16_int() -> tensor<i16> {
// CHECK-LABEL: func @const_int_narrowing // CHECK-LABEL: func @const_int_narrowing
func @const_int_narrowing() -> tensor<i32> { func @const_int_narrowing() -> tensor<i32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32>
%cst = xla_hlo.constant dense<42> : tensor<i64> %cst = mhlo.constant dense<42> : tensor<i64>
%0 = "xla_hlo.convert"(%cst) : (tensor<i64>) -> tensor<i32> %0 = "mhlo.convert"(%cst) : (tensor<i64>) -> tensor<i32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i32> return %0 : tensor<i32>
} }
@ -147,9 +147,9 @@ func @const_int_narrowing() -> tensor<i32> {
// CHECK-LABEL: func @const_int_widening // CHECK-LABEL: func @const_int_widening
func @const_int_widening() -> tensor<i64> { func @const_int_widening() -> tensor<i64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i64>
%cst = xla_hlo.constant dense<42> : tensor<i32> %cst = mhlo.constant dense<42> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<i64> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<i64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i64> return %0 : tensor<i64>
} }
@ -158,9 +158,9 @@ func @const_int_widening() -> tensor<i64> {
// CHECK-LABEL: func @const_negative_int_widening // CHECK-LABEL: func @const_negative_int_widening
func @const_negative_int_widening() -> tensor<i64> { func @const_negative_int_widening() -> tensor<i64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<-42> : tensor<i64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<-42> : tensor<i64>
%cst = xla_hlo.constant dense<-42> : tensor<i32> %cst = mhlo.constant dense<-42> : tensor<i32>
%0 = "xla_hlo.convert"(%cst) : (tensor<i32>) -> tensor<i64> %0 = "mhlo.convert"(%cst) : (tensor<i32>) -> tensor<i64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i64> return %0 : tensor<i64>
} }
@ -169,9 +169,9 @@ func @const_negative_int_widening() -> tensor<i64> {
// CHECK-LABEL: func @const_float_narrowing // CHECK-LABEL: func @const_float_narrowing
func @const_float_narrowing() -> tensor<f32> { func @const_float_narrowing() -> tensor<f32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.2{{0*}}e+00> : tensor<f32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.2{{0*}}e+00> : tensor<f32>
%cst = xla_hlo.constant dense<4.2> : tensor<f64> %cst = mhlo.constant dense<4.2> : tensor<f64>
%0 = "xla_hlo.convert"(%cst) : (tensor<f64>) -> tensor<f32> %0 = "mhlo.convert"(%cst) : (tensor<f64>) -> tensor<f32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<f32> return %0 : tensor<f32>
} }
@ -180,9 +180,9 @@ func @const_float_narrowing() -> tensor<f32> {
// CHECK-LABEL: func @const_f32_bf16 // CHECK-LABEL: func @const_f32_bf16
func @const_f32_bf16() -> tensor<bf16> { func @const_f32_bf16() -> tensor<bf16> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.2{{0*}}e+01> : tensor<bf16> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.2{{0*}}e+01> : tensor<bf16>
%cst = xla_hlo.constant dense<42.0> : tensor<f32> %cst = mhlo.constant dense<42.0> : tensor<f32>
%0 = "xla_hlo.convert"(%cst) : (tensor<f32>) -> tensor<bf16> %0 = "mhlo.convert"(%cst) : (tensor<f32>) -> tensor<bf16>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<bf16> return %0 : tensor<bf16>
} }
@ -191,9 +191,9 @@ func @const_f32_bf16() -> tensor<bf16> {
// CHECK-LABEL: func @const_bf16_f64 // CHECK-LABEL: func @const_bf16_f64
func @const_bf16_f64() -> tensor<f64> { func @const_bf16_f64() -> tensor<f64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.187500e+00> : tensor<f64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.187500e+00> : tensor<f64>
%cst = xla_hlo.constant dense<4.2> : tensor<bf16> %cst = mhlo.constant dense<4.2> : tensor<bf16>
%0 = "xla_hlo.convert"(%cst) : (tensor<bf16>) -> tensor<f64> %0 = "mhlo.convert"(%cst) : (tensor<bf16>) -> tensor<f64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<f64> return %0 : tensor<f64>
} }
@ -202,9 +202,9 @@ func @const_bf16_f64() -> tensor<f64> {
// CHECK-LABEL: func @const_bf16_int // CHECK-LABEL: func @const_bf16_int
func @const_bf16_int() -> tensor<i64> { func @const_bf16_int() -> tensor<i64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i64>
%cst = xla_hlo.constant dense<42.0> : tensor<bf16> %cst = mhlo.constant dense<42.0> : tensor<bf16>
%0 = "xla_hlo.convert"(%cst) : (tensor<bf16>) -> tensor<i64> %0 = "mhlo.convert"(%cst) : (tensor<bf16>) -> tensor<i64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i64> return %0 : tensor<i64>
} }
@ -214,11 +214,11 @@ func @const_bf16_int() -> tensor<i64> {
// CHECK-LABEL: func @const_high_rank_tensor // CHECK-LABEL: func @const_high_rank_tensor
func @const_high_rank_tensor() -> tensor<2x3xi32> { func @const_high_rank_tensor() -> tensor<2x3xi32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<[ // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<[
// CHECK-SAME: [1, 2, 3], [4, 5, 6] // CHECK-SAME: [1, 2, 3], [4, 5, 6]
// CHECK-SAME: ]> : tensor<2x3xi32> // CHECK-SAME: ]> : tensor<2x3xi32>
%cst = xla_hlo.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf32> %cst = mhlo.constant dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf32>
%0 = "xla_hlo.convert"(%cst) : (tensor<2x3xf32>) -> tensor<2x3xi32> %0 = "mhlo.convert"(%cst) : (tensor<2x3xf32>) -> tensor<2x3xi32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<2x3xi32> return %0 : tensor<2x3xi32>
} }

View File

@ -4,7 +4,7 @@
// BOTH-LABEL: func @attrs // BOTH-LABEL: func @attrs
func @attrs_copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @attrs_copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.exponential"(%tensor_operand) %tensor_result = "mhlo.exponential"(%tensor_operand)
{some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>}
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.exponential"(%{{.*}}, %{{.*}}) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} // BOTH: "xla_lhlo.exponential"(%{{.*}}, %{{.*}}) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>}
@ -28,11 +28,11 @@ func @return_func(%arg0: tensor<4xf32>) -> tensor<4xf32> {
// BOTH-LABEL: func @func_op_long // BOTH-LABEL: func @func_op_long
func @func_op_long(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @func_op_long(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
%1 = xla_hlo.maximum %arg0, %arg1 : tensor<4xf32> %1 = mhlo.maximum %arg0, %arg1 : tensor<4xf32>
%2 = xla_hlo.add %arg0, %1 : tensor<4xf32> %2 = mhlo.add %arg0, %1 : tensor<4xf32>
%3 = xla_hlo.minimum %arg0, %arg1 : tensor<4xf32> %3 = mhlo.minimum %arg0, %arg1 : tensor<4xf32>
%4 = xla_hlo.subtract %arg1, %3 : tensor<4xf32> %4 = mhlo.subtract %arg1, %3 : tensor<4xf32>
%5 = xla_hlo.multiply %2, %4 : tensor<4xf32> %5 = mhlo.multiply %2, %4 : tensor<4xf32>
return %5 : tensor<4xf32> return %5 : tensor<4xf32>
} }
// PRE: (%[[NEW_ARG0:.*]]: memref<4xf32>, %[[NEW_ARG1:.*]]: memref<4xf32>, %[[RESULT:.*]]: memref<4xf32>) // PRE: (%[[NEW_ARG0:.*]]: memref<4xf32>, %[[NEW_ARG1:.*]]: memref<4xf32>, %[[RESULT:.*]]: memref<4xf32>)
@ -65,12 +65,12 @@ func @fusion(%multiplier: memref<2x2xf32>, %summand_1: memref<2x2xf32>,
// BOTH-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<2x2xf32> // BOTH-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<2x2xf32>
%tensor_summand_1 = tensor_load %summand_1 : memref<2x2xf32> %tensor_summand_1 = tensor_load %summand_1 : memref<2x2xf32>
%tensor_summand_2 = tensor_load %summand_2 : memref<2x2xf32> %tensor_summand_2 = tensor_load %summand_2 : memref<2x2xf32>
%sum = "xla_hlo.add"(%tensor_summand_1, %tensor_summand_2) %sum = "mhlo.add"(%tensor_summand_1, %tensor_summand_2)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH-NEXT: "xla_lhlo.add"(%{{.*}}, %{{.*}}, %[[ADD_RESULT]]) // BOTH-NEXT: "xla_lhlo.add"(%{{.*}}, %{{.*}}, %[[ADD_RESULT]])
// BOTH-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<2x2xf32> // BOTH-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<2x2xf32>
%tensor_multiplier = tensor_load %multiplier : memref<2x2xf32> %tensor_multiplier = tensor_load %multiplier : memref<2x2xf32>
%tensor_result = "xla_hlo.multiply"(%sum, %tensor_multiplier) %tensor_result = "mhlo.multiply"(%sum, %tensor_multiplier)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH-NEXT: "xla_lhlo.multiply"(%[[ADD_RESULT]], %{{.*}}, %[[MUL_RESULT]]) // BOTH-NEXT: "xla_lhlo.multiply"(%[[ADD_RESULT]], %{{.*}}, %[[MUL_RESULT]])
// BOTH-NEXT: dealloc %[[ADD_RESULT]] : memref<2x2xf32> // BOTH-NEXT: dealloc %[[ADD_RESULT]] : memref<2x2xf32>
@ -86,7 +86,7 @@ func @fusion(%multiplier: memref<2x2xf32>, %summand_1: memref<2x2xf32>,
// BOTH-LABEL: func @copy // BOTH-LABEL: func @copy
func @copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.copy"(%tensor_operand) %tensor_result = "mhlo.copy"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.copy"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.copy"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -98,7 +98,7 @@ func @copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @exp // BOTH-LABEL: func @exp
func @exp(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @exp(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.exponential"(%tensor_operand) %tensor_result = "mhlo.exponential"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.exponential"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.exponential"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -110,7 +110,7 @@ func @exp(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @log // BOTH-LABEL: func @log
func @log(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @log(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.log"(%tensor_operand) %tensor_result = "mhlo.log"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.log"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.log"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -125,7 +125,7 @@ func @select(%pred: memref<2x2xi1>, %lhs: memref<2x2xf32>,
%tensor_pred = tensor_load %pred : memref<2x2xi1> %tensor_pred = tensor_load %pred : memref<2x2xi1>
%tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_lhs = tensor_load %lhs : memref<2x2xf32>
%tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32>
%tensor_result = "xla_hlo.select"(%tensor_pred, %tensor_lhs, %tensor_rhs) %tensor_result = "mhlo.select"(%tensor_pred, %tensor_lhs, %tensor_rhs)
: (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.select"(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.select"(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -138,7 +138,7 @@ func @select(%pred: memref<2x2xi1>, %lhs: memref<2x2xf32>,
func @compare(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xi1>) { func @compare(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xi1>) {
%tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_lhs = tensor_load %lhs : memref<2x2xf32>
%tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32>
%tensor_result = "xla_hlo.compare"(%tensor_lhs, %tensor_rhs) %tensor_result = "mhlo.compare"(%tensor_lhs, %tensor_rhs)
{comparison_direction = "EQ"} {comparison_direction = "EQ"}
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1>
// BOTH: "xla_lhlo.compare"(%{{.*}}, %{{.*}}, %{{.*}}) {comparison_direction = "EQ"} // BOTH: "xla_lhlo.compare"(%{{.*}}, %{{.*}}, %{{.*}}) {comparison_direction = "EQ"}
@ -151,7 +151,7 @@ func @compare(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2x
// BOTH-LABEL: func @broadcast // BOTH-LABEL: func @broadcast
func @broadcast(%operand: memref<5xf32>, %result: memref<10x5xf32>) { func @broadcast(%operand: memref<5xf32>, %result: memref<10x5xf32>) {
%tensor_operand = tensor_load %operand : memref<5xf32> %tensor_operand = tensor_load %operand : memref<5xf32>
%tensor_result = "xla_hlo.broadcast_in_dim"(%tensor_operand) %tensor_result = "mhlo.broadcast_in_dim"(%tensor_operand)
{broadcast_dimensions = dense<1> : tensor<1xi64>} {broadcast_dimensions = dense<1> : tensor<1xi64>}
: (tensor<5xf32>) -> tensor<10x5xf32> : (tensor<5xf32>) -> tensor<10x5xf32>
// BOTH: "xla_lhlo.broadcast_in_dim"(%{{.*}}, %{{.*}}) {broadcast_dimensions = dense<1> : tensor<1xi64>} // BOTH: "xla_lhlo.broadcast_in_dim"(%{{.*}}, %{{.*}}) {broadcast_dimensions = dense<1> : tensor<1xi64>}
@ -170,7 +170,7 @@ func @dyn_broadcast(%operand: memref<?x?xf32>) {
// BOTH-SAME: (%[[OPERAND:.*]]: memref<?x?xf32>) // BOTH-SAME: (%[[OPERAND:.*]]: memref<?x?xf32>)
%tensor_operand = tensor_load %operand : memref<?x?xf32> %tensor_operand = tensor_load %operand : memref<?x?xf32>
%shape = call @external_func() : () -> tensor<3xi64> %shape = call @external_func() : () -> tensor<3xi64>
%tensor_result = "xla_hlo.dynamic_broadcast_in_dim"(%tensor_operand, %shape) { %tensor_result = "mhlo.dynamic_broadcast_in_dim"(%tensor_operand, %shape) {
broadcast_dimensions = dense<[1, 2]> : tensor<2xi64> broadcast_dimensions = dense<[1, 2]> : tensor<2xi64>
} : (tensor<?x?xf32>, tensor<3xi64>) -> tensor<?x?x?xf32> } : (tensor<?x?xf32>, tensor<3xi64>) -> tensor<?x?x?xf32>
// BOTH: %[[SHAPE:.*]] = call @external_func() // BOTH: %[[SHAPE:.*]] = call @external_func()
@ -226,7 +226,7 @@ func @complex(%real: memref<2x2xf32>,
%result: memref<2x2xcomplex<f32>>) { %result: memref<2x2xcomplex<f32>>) {
%tensor_real = tensor_load %real : memref<2x2xf32> %tensor_real = tensor_load %real : memref<2x2xf32>
%tensor_imag = tensor_load %imag : memref<2x2xf32> %tensor_imag = tensor_load %imag : memref<2x2xf32>
%tensor_result = "xla_hlo.complex"(%tensor_real, %tensor_imag) %tensor_result = "mhlo.complex"(%tensor_real, %tensor_imag)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xcomplex<f32>> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xcomplex<f32>>
// BOTH: "xla_lhlo.complex"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.complex"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xcomplex<f32>> tensor_store %tensor_result, %result : memref<2x2xcomplex<f32>>
@ -238,7 +238,7 @@ func @complex(%real: memref<2x2xf32>,
// BOTH-LABEL: func @real // BOTH-LABEL: func @real
func @real(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) { func @real(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xcomplex<f32>> %tensor_operand = tensor_load %operand : memref<2x2xcomplex<f32>>
%tensor_result = "xla_hlo.real"(%tensor_operand) %tensor_result = "mhlo.real"(%tensor_operand)
: (tensor<2x2xcomplex<f32>>) -> tensor<2x2xf32> : (tensor<2x2xcomplex<f32>>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.real"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.real"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -250,7 +250,7 @@ func @real(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @imag // BOTH-LABEL: func @imag
func @imag(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) { func @imag(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xcomplex<f32>> %tensor_operand = tensor_load %operand : memref<2x2xcomplex<f32>>
%tensor_result = "xla_hlo.imag"(%tensor_operand) %tensor_result = "mhlo.imag"(%tensor_operand)
: (tensor<2x2xcomplex<f32>>) -> tensor<2x2xf32> : (tensor<2x2xcomplex<f32>>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.imag"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.imag"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -261,7 +261,7 @@ func @imag(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @iota // BOTH-LABEL: func @iota
func @iota(%result: memref<10xi32>) { func @iota(%result: memref<10xi32>) {
%tensor_result = "xla_hlo.iota"() %tensor_result = "mhlo.iota"()
{iota_dimension = 0 : i64} : () -> tensor<10xi32> {iota_dimension = 0 : i64} : () -> tensor<10xi32>
// BOTH: "xla_lhlo.iota"(%{{.*}}) {iota_dimension = 0 : i64} // BOTH: "xla_lhlo.iota"(%{{.*}}) {iota_dimension = 0 : i64}
tensor_store %tensor_result, %result : memref<10xi32> tensor_store %tensor_result, %result : memref<10xi32>
@ -273,7 +273,7 @@ func @iota(%result: memref<10xi32>) {
// BOTH-LABEL: func @abs // BOTH-LABEL: func @abs
func @abs(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @abs(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.abs"(%tensor_operand) %tensor_result = "mhlo.abs"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.abs"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.abs"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -285,7 +285,7 @@ func @abs(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @ceil // BOTH-LABEL: func @ceil
func @ceil(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @ceil(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.ceil"(%tensor_operand) %tensor_result = "mhlo.ceil"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.ceil"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.ceil"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -297,7 +297,7 @@ func @ceil(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @convert // BOTH-LABEL: func @convert
func @convert(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @convert(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.convert"(%tensor_operand) %tensor_result = "mhlo.convert"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.copy"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.copy"(%{{.*}}, %{{.*}})
// BOTH-NOT: tensor_store // BOTH-NOT: tensor_store
@ -310,7 +310,7 @@ func @convert(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @cos // BOTH-LABEL: func @cos
func @cos(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @cos(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.cosine"(%tensor_operand) %tensor_result = "mhlo.cosine"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.cosine"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.cosine"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -322,7 +322,7 @@ func @cos(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @neg // BOTH-LABEL: func @neg
func @neg(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @neg(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.negate"(%tensor_operand) %tensor_result = "mhlo.negate"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.negate"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.negate"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -334,7 +334,7 @@ func @neg(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @rsqrt // BOTH-LABEL: func @rsqrt
func @rsqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @rsqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.rsqrt"(%tensor_operand) %tensor_result = "mhlo.rsqrt"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.rsqrt"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.rsqrt"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -346,7 +346,7 @@ func @rsqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @sign // BOTH-LABEL: func @sign
func @sign(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @sign(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.sign"(%tensor_operand) %tensor_result = "mhlo.sign"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.sign"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.sign"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -358,7 +358,7 @@ func @sign(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @sqrt // BOTH-LABEL: func @sqrt
func @sqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @sqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.sqrt"(%tensor_operand) %tensor_result = "mhlo.sqrt"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.sqrt"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.sqrt"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -370,7 +370,7 @@ func @sqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
// BOTH-LABEL: func @tanh // BOTH-LABEL: func @tanh
func @tanh(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { func @tanh(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_operand = tensor_load %operand : memref<2x2xf32>
%tensor_result = "xla_hlo.tanh"(%tensor_operand) %tensor_result = "mhlo.tanh"(%tensor_operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.tanh"(%{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.tanh"(%{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -383,7 +383,7 @@ func @tanh(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) {
func @remainder(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xf32>) { func @remainder(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xf32>) {
%tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_lhs = tensor_load %lhs : memref<2x2xf32>
%tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32>
%tensor_result = "xla_hlo.remainder"(%tensor_lhs, %tensor_rhs) %tensor_result = "mhlo.remainder"(%tensor_lhs, %tensor_rhs)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
// BOTH: "xla_lhlo.remainder"(%{{.*}}, %{{.*}}, %{{.*}}) // BOTH: "xla_lhlo.remainder"(%{{.*}}, %{{.*}}, %{{.*}})
tensor_store %tensor_result, %result : memref<2x2xf32> tensor_store %tensor_result, %result : memref<2x2xf32>
@ -395,7 +395,7 @@ func @remainder(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x
// Dynamic shape binary element-wise operation. // Dynamic shape binary element-wise operation.
// BOTH-LABEL: func @add_dyn // BOTH-LABEL: func @add_dyn
func @add_dyn(%lhs: tensor<?x?xf32>, %rhs: tensor<?x?xf32>) { func @add_dyn(%lhs: tensor<?x?xf32>, %rhs: tensor<?x?xf32>) {
%result = "xla_hlo.add"(%lhs, %rhs) %result = "mhlo.add"(%lhs, %rhs)
: (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// BOTH: %[[C0:.*]] = constant 0 : index // BOTH: %[[C0:.*]] = constant 0 : index
// BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref<?x?xf32> // BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref<?x?xf32>
@ -420,7 +420,7 @@ func @add_dyn(%lhs: tensor<?x?xf32>, %rhs: tensor<?x?xf32>) {
// Dynamic shape unary element-wise operation. // Dynamic shape unary element-wise operation.
// BOTH-LABEL: func @tanh_dyn // BOTH-LABEL: func @tanh_dyn
func @tanh_dyn(%arg0: tensor<?x?xf32>) { func @tanh_dyn(%arg0: tensor<?x?xf32>) {
%result = "xla_hlo.tanh"(%arg0) %result = "mhlo.tanh"(%arg0)
: (tensor<?x?xf32>) -> tensor<?x?xf32> : (tensor<?x?xf32>) -> tensor<?x?xf32>
// BOTH: %[[C0:.*]] = constant 0 : index // BOTH: %[[C0:.*]] = constant 0 : index
// BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref<?x?xf32> // BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref<?x?xf32>
@ -448,7 +448,7 @@ func @dot(%arg0: tensor<1024x1024xf32>) -> tensor<1024x1024xf32> {
// ESC-SAME: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]] // ESC-SAME: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]]
// BOTH-NEXT: %[[ALLOC:.*]] = alloc // BOTH-NEXT: %[[ALLOC:.*]] = alloc
// BOTH: "xla_lhlo.dot"(%[[ARG0]], %[[ARG0]], %[[ALLOC]]) : ([[TYPE]], [[TYPE]], [[TYPE]]) -> () // BOTH: "xla_lhlo.dot"(%[[ARG0]], %[[ARG0]], %[[ALLOC]]) : ([[TYPE]], [[TYPE]], [[TYPE]]) -> ()
%dot = "xla_hlo.dot"(%arg0, %arg0) %dot = "mhlo.dot"(%arg0, %arg0)
: (tensor<1024x1024xf32>, tensor<1024x1024xf32>) -> tensor<1024x1024xf32> : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) -> tensor<1024x1024xf32>
// PRE: "xla_lhlo.copy"(%[[ALLOC]], %[[RESULT]]) // PRE: "xla_lhlo.copy"(%[[ALLOC]], %[[RESULT]])
// ESC: return %[[ALLOC]] // ESC: return %[[ALLOC]]
@ -466,7 +466,7 @@ func @conv(%input: tensor<3x5x5x3xf32>, %filter : tensor<2x2x3x4xf32>) -> tensor
// BOTH-SAME: [0, 1], [0, 1]]> : tensor<2x2xi64> // BOTH-SAME: [0, 1], [0, 1]]> : tensor<2x2xi64>
// BOTH-SAME: rhs_dilation = dense<[1, 2]> // BOTH-SAME: rhs_dilation = dense<[1, 2]>
// BOTH-SAME: window_strides = dense<[2, 1]> // BOTH-SAME: window_strides = dense<[2, 1]>
%out = "xla_hlo.convolution"(%filter, %input) { %out = "mhlo.convolution"(%filter, %input) {
batch_group_count = 1 : i64, batch_group_count = 1 : i64,
dimension_numbers = { dimension_numbers = {
input_batch_dimension = 0 : i64, input_batch_dimension = 0 : i64,

View File

@ -10,7 +10,7 @@ func @float_add(%lhs: tensor<2x2xf32>,
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32 // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32
// CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = addf %[[ARG0]], %[[ARG1]] // CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = addf %[[ARG0]], %[[ARG1]]
// CHECK: linalg.yield %[[RESULT]] // CHECK: linalg.yield %[[RESULT]]
%0 = "xla_hlo.add"(%lhs, %rhs) : (tensor<2x2xf32>, %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32> tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -22,7 +22,7 @@ func @integer_add(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: addi // CHECK: addi
%0 = "xla_hlo.add"(%lhs, %rhs) : (tensor<2x2xi32>, %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32> tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -34,7 +34,7 @@ func @float_mul(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: mulf // CHECK: mulf
%0 = "xla_hlo.multiply"(%lhs, %rhs) : (tensor<2x2xf32>, %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32> tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -46,7 +46,7 @@ func @integer_mul(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: muli // CHECK: muli
%0 = "xla_hlo.multiply"(%lhs, %rhs) : (tensor<2x2xi32>, %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32> tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -58,7 +58,7 @@ func @float_remainder(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: remf // CHECK: remf
%0 = "xla_hlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>, %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32> tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -70,7 +70,7 @@ func @integer_remainder(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: remi_signed // CHECK: remi_signed
%0 = "xla_hlo.remainder"(%lhs, %rhs) : (tensor<2x2xi32>, %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32> tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -79,7 +79,7 @@ func @integer_remainder(%lhs: tensor<2x2xi32>,
// CHECK-LABEL: func @float_rsqrt // CHECK-LABEL: func @float_rsqrt
func @float_rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> {
%tensor_result = "xla_hlo.rsqrt"(%operand) %tensor_result = "mhlo.rsqrt"(%operand)
: (tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>) -> tensor<2x2xf32>
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: rsqrt // CHECK: rsqrt
@ -93,7 +93,7 @@ func @float_sub(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: subf // CHECK: subf
%0 = "xla_hlo.subtract"(%lhs, %rhs) : (tensor<2x2xf32>, %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xf32>,
tensor<2x2xf32>) -> tensor<2x2xf32> tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -105,7 +105,7 @@ func @integer_sub(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: subi // CHECK: subi
%0 = "xla_hlo.subtract"(%lhs, %rhs) : (tensor<2x2xi32>, %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32> tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -116,7 +116,7 @@ func @integer_sub(%lhs: tensor<2x2xi32>,
func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: absf // CHECK: absf
%0 = "xla_hlo.abs"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.abs"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -126,7 +126,7 @@ func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: exp // CHECK: exp
%0 = "xla_hlo.exponential"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.exponential"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -136,7 +136,7 @@ func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: log // CHECK: log
%0 = "xla_hlo.log"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.log"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -146,7 +146,7 @@ func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: ceilf // CHECK: ceilf
%0 = "xla_hlo.ceil"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.ceil"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -156,7 +156,7 @@ func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: negf // CHECK: negf
%0 = "xla_hlo.negate"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.negate"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -166,7 +166,7 @@ func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_tanh(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_tanh(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: tanh // CHECK: tanh
%0 = "xla_hlo.tanh"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.tanh"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -177,7 +177,7 @@ func @integer_and(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: and // CHECK: and
%0 = "xla_hlo.and"(%lhs, %rhs) : (tensor<2x2xi32>, %0 = "mhlo.and"(%lhs, %rhs) : (tensor<2x2xi32>,
tensor<2x2xi32>) -> tensor<2x2xi32> tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -187,7 +187,7 @@ func @integer_and(%lhs: tensor<2x2xi32>,
// CHECK-LABEL: func @float_cmp // CHECK-LABEL: func @float_cmp
func @float_cmp(%lhs: tensor<2x2xf32>, func @float_cmp(%lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) { %rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) {
%0 = "xla_hlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"} %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"}
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1>
return %0 : tensor<2x2xi1> return %0 : tensor<2x2xi1>
} }
@ -201,7 +201,7 @@ func @float_cmp(%lhs: tensor<2x2xf32>,
// CHECK-LABEL: func @int_cmp // CHECK-LABEL: func @int_cmp
func @int_cmp(%lhs: tensor<2x2xi32>, func @int_cmp(%lhs: tensor<2x2xi32>,
%rhs: tensor<2x2xi32>) -> tensor<2x2xi1> { %rhs: tensor<2x2xi32>) -> tensor<2x2xi1> {
%0 = "xla_hlo.compare"(%lhs, %rhs) {comparison_direction = "LT"} %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "LT"}
: (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi1>) : (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi1>)
return %0 : tensor<2x2xi1> return %0 : tensor<2x2xi1>
} }
@ -216,7 +216,7 @@ func @int_cmp(%lhs: tensor<2x2xi32>,
func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: cos // CHECK: cos
%0 = "xla_hlo.cosine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.cosine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -226,7 +226,7 @@ func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK: linalg.generic // CHECK: linalg.generic
// CHECK: sin // CHECK: sin
%0 = "xla_hlo.sine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> %0 = "mhlo.sine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -235,7 +235,7 @@ func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK-LABEL: func @copy // CHECK-LABEL: func @copy
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> { func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> {
%0 = "xla_hlo.copy"(%input) : (tensor<2x4x8xf32>) -> (tensor<2x4x8xf32>) %0 = "mhlo.copy"(%input) : (tensor<2x4x8xf32>) -> (tensor<2x4x8xf32>)
return %0 : tensor<2x4x8xf32> return %0 : tensor<2x4x8xf32>
} }
// CHECK: return [[ARG]] : tensor<2x4x8xf32> // CHECK: return [[ARG]] : tensor<2x4x8xf32>
@ -245,7 +245,7 @@ func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> {
// CHECK-LABEL: func @select // CHECK-LABEL: func @select
func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>, func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>,
%rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
%0 = "xla_hlo.select"(%pred, %lhs, %rhs) %0 = "mhlo.select"(%pred, %lhs, %rhs)
: (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> (tensor<2x2xf32>) : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> (tensor<2x2xf32>)
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -260,7 +260,7 @@ func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>,
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @broadcast_scalar // CHECK-LABEL: func @broadcast_scalar
func @broadcast_scalar(%arg: tensor<f32>) -> tensor<4x2x1xf32> { func @broadcast_scalar(%arg: tensor<f32>) -> tensor<4x2x1xf32> {
%0 = "xla_hlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<f32>) -> tensor<4x2x1xf32> %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<f32>) -> tensor<4x2x1xf32>
return %0: tensor<4x2x1xf32> return %0: tensor<4x2x1xf32>
} }
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
@ -273,7 +273,7 @@ func @broadcast_scalar(%arg: tensor<f32>) -> tensor<4x2x1xf32> {
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)>
// CHECK-LABEL: func @broadcast // CHECK-LABEL: func @broadcast
func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> { func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> {
%0 = "xla_hlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32>
return %0: tensor<4x2x1x4x?x16xf32> return %0: tensor<4x2x1x4x?x16xf32>
} }
// CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
@ -286,7 +286,7 @@ func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> {
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func @broadcast_in_dim // CHECK-LABEL: func @broadcast_in_dim
func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> { func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> {
%0 = "xla_hlo.broadcast_in_dim"(%operand) %0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>} {broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>}
: (tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> : (tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32>
return %0 : tensor<7x10x6x4x5xf32> return %0 : tensor<7x10x6x4x5xf32>
@ -302,7 +302,7 @@ func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> {
// CHECK-LABEL: func @broadcast_in_dim_with_one_to_one // CHECK-LABEL: func @broadcast_in_dim_with_one_to_one
func @broadcast_in_dim_with_one_to_one( func @broadcast_in_dim_with_one_to_one(
%operand: tensor<1xf32>) -> tensor<1x5xf32> { %operand: tensor<1xf32>) -> tensor<1x5xf32> {
%0 = "xla_hlo.broadcast_in_dim"(%operand) %0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[0]> : tensor<1xi64>} {broadcast_dimensions = dense<[0]> : tensor<1xi64>}
: (tensor<1xf32>) -> tensor<1x5xf32> : (tensor<1xf32>) -> tensor<1x5xf32>
return %0 : tensor<1x5xf32> return %0 : tensor<1x5xf32>
@ -317,7 +317,7 @@ func @broadcast_in_dim_with_one_to_one(
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-LABEL: func @broadcast_scalar // CHECK-LABEL: func @broadcast_scalar
func @broadcast_scalar(%operand: tensor<f32>) -> tensor<7x10x6xf32> { func @broadcast_scalar(%operand: tensor<f32>) -> tensor<7x10x6xf32> {
%0 = "xla_hlo.broadcast_in_dim"(%operand) %0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[]> : tensor<0xi64>} {broadcast_dimensions = dense<[]> : tensor<0xi64>}
: (tensor<f32>) -> tensor<7x10x6xf32> : (tensor<f32>) -> tensor<7x10x6xf32>
return %0 : tensor<7x10x6xf32> return %0 : tensor<7x10x6xf32>
@ -332,7 +332,7 @@ func @broadcast_scalar(%operand: tensor<f32>) -> tensor<7x10x6xf32> {
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
// CHECK-LABEL: func @transpose // CHECK-LABEL: func @transpose
func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> { func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> {
%0 = "xla_hlo.transpose"(%arg0) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>} %0 = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>}
: (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> : (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32>
return %0 : tensor<3x2x5x9xi32> return %0 : tensor<3x2x5x9xi32>
} }
@ -344,7 +344,7 @@ func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> {
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d2)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK-LABEL: func @reshape_3D_2D // CHECK-LABEL: func @reshape_3D_2D
func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> { func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32> %0 = "mhlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32> return %0 : tensor<12x42xi32>
} }
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
@ -355,7 +355,7 @@ func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> {
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)>
// CHECK-LABEL: func @reshape_4D_2D // CHECK-LABEL: func @reshape_4D_2D
func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> { func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32> %0 = "mhlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32>
return %0 : tensor<12x42xi32> return %0 : tensor<12x42xi32>
} }
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
@ -366,7 +366,7 @@ func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> {
// CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)>
// CHECK-LABEL: func @reshape_2D_4D // CHECK-LABEL: func @reshape_2D_4D
func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> { func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32> %0 = "mhlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32>
return %0 : tensor<12x1x42x1xi32> return %0 : tensor<12x1x42x1xi32>
} }
// CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]]
@ -375,7 +375,7 @@ func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> {
// CHECK-LABEL: func @minf // CHECK-LABEL: func @minf
func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
%0 = "xla_hlo.minimum"(%lhs, %rhs) %0 = "mhlo.minimum"(%lhs, %rhs)
: (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32>
return %0 : tensor<2x2xf32> return %0 : tensor<2x2xf32>
} }
@ -389,7 +389,7 @@ func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> {
// CHECK-LABEL: func @maxi // CHECK-LABEL: func @maxi
func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
%0 = "xla_hlo.maximum"(%lhs, %rhs) %0 = "mhlo.maximum"(%lhs, %rhs)
: (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
return %0 : tensor<2x2xi32> return %0 : tensor<2x2xi32>
} }
@ -404,7 +404,7 @@ func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> {
// CHECK-DAG: #[[MAP:.*]] = affine_map<() -> ()> // CHECK-DAG: #[[MAP:.*]] = affine_map<() -> ()>
// CHECK-LABEL: func @add_scalar // CHECK-LABEL: func @add_scalar
func @add_scalar(%lhs: tensor<f32>, %rhs: tensor<f32>) -> tensor<f32> { func @add_scalar(%lhs: tensor<f32>, %rhs: tensor<f32>) -> tensor<f32> {
%0 = "xla_hlo.add"(%lhs, %rhs) : (tensor<f32>, tensor<f32>) -> tensor<f32> %0 = "mhlo.add"(%lhs, %rhs) : (tensor<f32>, tensor<f32>) -> tensor<f32>
return %0 : tensor<f32> return %0 : tensor<f32>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -417,7 +417,7 @@ func @add_scalar(%lhs: tensor<f32>, %rhs: tensor<f32>) -> tensor<f32> {
func @reshape_collapse_single_dim func @reshape_collapse_single_dim
(%arg0: tensor<1x28x28x1xf32>) -> tensor<1x784xf32> { (%arg0: tensor<1x28x28x1xf32>) -> tensor<1x784xf32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32> %0 = "mhlo.reshape"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32>
return %0 : tensor<1x784xf32> return %0 : tensor<1x784xf32>
} }
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)>
@ -428,7 +428,7 @@ func @reshape_collapse_single_dim
// ----- // -----
func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> { func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> %0 = "mhlo.reshape"(%arg0) : (tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32>
return %0 : tensor<2x4x3xf32> return %0 : tensor<2x4x3xf32>
} }
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)>
@ -440,7 +440,7 @@ func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> {
// ----- // -----
func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> { func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<2x8xf32>) -> tensor<2x4x2xf32> %0 = "mhlo.reshape"(%arg0) : (tensor<2x8xf32>) -> tensor<2x4x2xf32>
return %0 : tensor<2x4x2xf32> return %0 : tensor<2x4x2xf32>
} }
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0)>
@ -451,7 +451,7 @@ func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> {
// ----- // -----
func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> { func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<8xf32>) -> tensor<1x4x2xf32> %0 = "mhlo.reshape"(%arg0) : (tensor<8xf32>) -> tensor<1x4x2xf32>
return %0 : tensor<1x4x2xf32> return %0 : tensor<1x4x2xf32>
} }
// CHECK: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
@ -462,7 +462,7 @@ func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> {
func @reshape_multiple_collapse func @reshape_multiple_collapse
(%arg0 : tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> { (%arg0 : tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> {
%0 = "xla_hlo.reshape"(%arg0) : (tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> %0 = "mhlo.reshape"(%arg0) : (tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32>
return %0 : tensor<1x4x5x6xf32> return %0 : tensor<1x4x5x6xf32>
} }
// CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)> // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)>
@ -476,7 +476,7 @@ func @reshape_multiple_collapse
// CHECK-LABEL: func @convert_i32_to_f32 // CHECK-LABEL: func @convert_i32_to_f32
func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> { func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xf32> %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xf32>
return %result : tensor<2x2xf32> return %result : tensor<2x2xf32>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -488,7 +488,7 @@ func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> {
// CHECK-LABEL: func @convert_i16_to_i32 // CHECK-LABEL: func @convert_i16_to_i32
func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> { func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xi16>) -> tensor<2x2xi32> %result = "mhlo.convert"(%input) : (tensor<2x2xi16>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32> return %result : tensor<2x2xi32>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -500,7 +500,7 @@ func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> {
// CHECK-LABEL: func @convert_i32_to_i16 // CHECK-LABEL: func @convert_i32_to_i16
func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> { func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi16> %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi16>
return %result : tensor<2x2xi16> return %result : tensor<2x2xi16>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -512,7 +512,7 @@ func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> {
// CHECK-LABEL: func @convert_f32_to_f64 // CHECK-LABEL: func @convert_f32_to_f64
func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> { func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf64> %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf64>
return %result : tensor<2x2xf64> return %result : tensor<2x2xf64>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -524,7 +524,7 @@ func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> {
// CHECK-LABEL: func @convert_f64_to_f32 // CHECK-LABEL: func @convert_f64_to_f32
func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> { func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xf64>) -> tensor<2x2xf32> %result = "mhlo.convert"(%input) : (tensor<2x2xf64>) -> tensor<2x2xf32>
return %result : tensor<2x2xf32> return %result : tensor<2x2xf32>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -536,7 +536,7 @@ func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> {
// CHECK-LABEL: func @convert_f32_to_i32 // CHECK-LABEL: func @convert_f32_to_i32
func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> { func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> {
%result = "xla_hlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi32> %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi32>
return %result : tensor<2x2xi32> return %result : tensor<2x2xi32>
} }
// CHECK: linalg.generic // CHECK: linalg.generic
@ -550,7 +550,7 @@ func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> {
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @reverse // CHECK-LABEL: func @reverse
func @reverse(%input: tensor<2x3xf32>) -> tensor<2x3xf32> { func @reverse(%input: tensor<2x3xf32>) -> tensor<2x3xf32> {
%result = "xla_hlo.reverse"(%input) { %result = "mhlo.reverse"(%input) {
dimensions = dense<1> : tensor<1xi64> dimensions = dense<1> : tensor<1xi64>
} : (tensor<2x3xf32>) -> tensor<2x3xf32> } : (tensor<2x3xf32>) -> tensor<2x3xf32>
return %result : tensor<2x3xf32> return %result : tensor<2x3xf32>

View File

@ -1,28 +1,28 @@
// RUN: mlir-hlo-opt %s -inline | FileCheck %s // RUN: mlir-hlo-opt %s -inline | FileCheck %s
// Test case: Basic test of inlining into xla_hlo.while. // Test case: Basic test of inlining into mhlo.while.
// CHECK-LABEL: func @caller // CHECK-LABEL: func @caller
// CHECK: "xla_hlo.while"{{.*}}( { // CHECK: "mhlo.while"{{.*}}( {
// CHECK: }, { // CHECK: }, {
// CHECK: "xla_hlo.exponential" // CHECK: "mhlo.exponential"
// CHECK: }) // CHECK: })
// CHECK-LABEL: func @callee // CHECK-LABEL: func @callee
func @caller(%arg0: tensor<f32>, %pred: tensor<i1>) -> tensor<f32> { func @caller(%arg0: tensor<f32>, %pred: tensor<i1>) -> tensor<f32> {
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^entry(%unused: tensor<f32>): ^entry(%unused: tensor<f32>):
"xla_hlo.return"(%pred) : (tensor<i1>) -> () "mhlo.return"(%pred) : (tensor<i1>) -> ()
}, { }, {
^entry(%0: tensor<f32>): ^entry(%0: tensor<f32>):
%1 = call @callee(%0) : (tensor<f32>) -> (tensor<f32>) %1 = call @callee(%0) : (tensor<f32>) -> (tensor<f32>)
"xla_hlo.return"(%1) : (tensor<f32>) -> () "mhlo.return"(%1) : (tensor<f32>) -> ()
} ) : (tensor<f32>) -> (tensor<f32>) } ) : (tensor<f32>) -> (tensor<f32>)
return %0 : tensor<f32> return %0 : tensor<f32>
} }
func @callee(%arg0: tensor<f32>) -> tensor<f32> { func @callee(%arg0: tensor<f32>) -> tensor<f32> {
%0 = "xla_hlo.exponential"(%arg0) : (tensor<f32>) -> tensor<f32> %0 = "mhlo.exponential"(%arg0) : (tensor<f32>) -> tensor<f32>
return %0 : tensor<f32> return %0 : tensor<f32>
} }

View File

@ -4,21 +4,21 @@
func @while(%arg0: tensor<i64>) -> tensor<i64> { func @while(%arg0: tensor<i64>) -> tensor<i64> {
//CHECK: br ^bb1(%arg0 : tensor<i64>) //CHECK: br ^bb1(%arg0 : tensor<i64>)
//CHECK: ^bb1([[VAL0:%.+]]: tensor<i64>): //CHECK: ^bb1([[VAL0:%.+]]: tensor<i64>):
//CHECK: [[VAL1:%.+]] = "xla_hlo.compare"([[VAL0]], [[VAL0]]) //CHECK: [[VAL1:%.+]] = "mhlo.compare"([[VAL0]], [[VAL0]])
//CHECK: [[VAL2:%.+]] = extract_element [[VAL1]][] : tensor<i1> //CHECK: [[VAL2:%.+]] = extract_element [[VAL1]][] : tensor<i1>
//CHECK: cond_br [[VAL2]], ^bb2([[VAL0]] : tensor<i64>), ^bb3([[VAL0]] : tensor<i64>) //CHECK: cond_br [[VAL2]], ^bb2([[VAL0]] : tensor<i64>), ^bb3([[VAL0]] : tensor<i64>)
//CHECK: ^bb2([[VAL3:%.+]]: tensor<i64>): //CHECK: ^bb2([[VAL3:%.+]]: tensor<i64>):
//CHECK: [[VAL4:%.+]] = xla_hlo.add [[VAL3]], [[VAL3]] //CHECK: [[VAL4:%.+]] = mhlo.add [[VAL3]], [[VAL3]]
//CHECK: br ^bb1([[VAL4]] : tensor<i64>) //CHECK: br ^bb1([[VAL4]] : tensor<i64>)
//CHECK: ^bb3([[VAL5:%.+]]: tensor<i64>): //CHECK: ^bb3([[VAL5:%.+]]: tensor<i64>):
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = "xla_hlo.compare"(%arg1, %arg1) {comparison_direction = "LT", name = "compare.2"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%arg1, %arg1) {comparison_direction = "LT", name = "compare.2"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
%1 = xla_hlo.add %arg1, %arg1 {name = "compare.0"} : tensor<i64> %1 = mhlo.add %arg1, %arg1 {name = "compare.0"} : tensor<i64>
"xla_hlo.return"(%1) : (tensor<i64>) -> () "mhlo.return"(%1) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
// CHECK-NEXT: return [[VAL5]] // CHECK-NEXT: return [[VAL5]]
@ -30,27 +30,27 @@ func @conditional(%arg0: tensor<f32>) -> tensor<f32> {
// CHECK: [[C0:%.+]] = constant dense<1.000000e+01> : tensor<f32> // CHECK: [[C0:%.+]] = constant dense<1.000000e+01> : tensor<f32>
%cst = constant dense<1.000000e+01> : tensor<f32> %cst = constant dense<1.000000e+01> : tensor<f32>
// CHECK: [[VAL0:%.+]] = "xla_hlo.compare"(%arg0, [[C0]]) {comparison_direction = "LT"} : (tensor<f32>, tensor<f32>) -> tensor<i1> // CHECK: [[VAL0:%.+]] = "mhlo.compare"(%arg0, [[C0]]) {comparison_direction = "LT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
%0 = "xla_hlo.compare"(%arg0, %cst) {comparison_direction = "LT"} : (tensor<f32>, tensor<f32>) -> tensor<i1> %0 = "mhlo.compare"(%arg0, %cst) {comparison_direction = "LT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
// CHECK: [[VAL1:%.+]] = extract_element [[VAL0]][] : tensor<i1> // CHECK: [[VAL1:%.+]] = extract_element [[VAL0]][] : tensor<i1>
// CHECK: cond_br [[VAL1]], ^bb1(%arg0 : tensor<f32>), ^bb2(%arg0 : tensor<f32>) // CHECK: cond_br [[VAL1]], ^bb1(%arg0 : tensor<f32>), ^bb2(%arg0 : tensor<f32>)
%1 = "xla_hlo.if"(%0, %arg0, %arg0) ( { %1 = "mhlo.if"(%0, %arg0, %arg0) ( {
^bb0(%arg1: tensor<f32>): ^bb0(%arg1: tensor<f32>):
// CHECK: ^bb1([[VAL2:%.+]]: tensor<f32>): // CHECK: ^bb1([[VAL2:%.+]]: tensor<f32>):
// CHECK: [[VAL3:%.+]] = "xla_hlo.log"([[VAL2]]) : (tensor<f32>) -> tensor<f32> // CHECK: [[VAL3:%.+]] = "mhlo.log"([[VAL2]]) : (tensor<f32>) -> tensor<f32>
// CHECK: br ^bb3([[VAL3]] : tensor<f32>) // CHECK: br ^bb3([[VAL3]] : tensor<f32>)
%2 = "xla_hlo.log"(%arg1) : (tensor<f32>) -> tensor<f32> %2 = "mhlo.log"(%arg1) : (tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%2) : (tensor<f32>) -> () "mhlo.return"(%2) : (tensor<f32>) -> ()
}, { }, {
^bb0(%arg1: tensor<f32>): ^bb0(%arg1: tensor<f32>):
// CHECK: ^bb2([[VAL4:%.+]]: tensor<f32>): // CHECK: ^bb2([[VAL4:%.+]]: tensor<f32>):
// CHECK: [[VAL5:%.+]] = "xla_hlo.exponential"([[VAL4]]) : (tensor<f32>) -> tensor<f32> // CHECK: [[VAL5:%.+]] = "mhlo.exponential"([[VAL4]]) : (tensor<f32>) -> tensor<f32>
// CHECK: br ^bb3([[VAL5]] : tensor<f32>) // CHECK: br ^bb3([[VAL5]] : tensor<f32>)
%2 = "xla_hlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32> %2 = "mhlo.exponential"(%arg1) : (tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%2) : (tensor<f32>) -> () "mhlo.return"(%2) : (tensor<f32>) -> ()
}) : (tensor<i1>, tensor<f32>, tensor<f32>) -> tensor<f32> }) : (tensor<i1>, tensor<f32>, tensor<f32>) -> tensor<f32>
// CHECK: ^bb3([[VAL6:%.+]]: tensor<f32>): // CHECK: ^bb3([[VAL6:%.+]]: tensor<f32>):
@ -62,27 +62,27 @@ func @conditional(%arg0: tensor<f32>) -> tensor<f32> {
func @while_with_multiple_blocks_in_body(%arg0: tensor<i64>) -> tensor<i64> { func @while_with_multiple_blocks_in_body(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK: br ^[[COND_ENTRY:.+]](%arg0 : tensor<i64>) // CHECK: br ^[[COND_ENTRY:.+]](%arg0 : tensor<i64>)
// CHECK: ^[[COND_ENTRY]](%0: tensor<i64>): // CHECK: ^[[COND_ENTRY]](%0: tensor<i64>):
// CHECK: %1 = "xla_hlo.compare"(%0, %0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> // CHECK: %1 = "mhlo.compare"(%0, %0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
// CHECK: %2 = extract_element %1[] : tensor<i1> // CHECK: %2 = extract_element %1[] : tensor<i1>
// CHECK: cond_br %2, ^[[BODY_ENTRY:.+]](%0 : tensor<i64>), ^[[EXIT:.+]](%0 : tensor<i64>) // CHECK: cond_br %2, ^[[BODY_ENTRY:.+]](%0 : tensor<i64>), ^[[EXIT:.+]](%0 : tensor<i64>)
// CHECK: ^[[BODY_ENTRY]](%3: tensor<i64>): // CHECK: ^[[BODY_ENTRY]](%3: tensor<i64>):
// CHECK: br ^[[BODY_SUCC:.+]](%3 : tensor<i64>) // CHECK: br ^[[BODY_SUCC:.+]](%3 : tensor<i64>)
// CHECK: ^[[BODY_SUCC]](%4: tensor<i64>): // CHECK: ^[[BODY_SUCC]](%4: tensor<i64>):
// CHECK: %5 = xla_hlo.add %4, %4 : tensor<i64> // CHECK: %5 = mhlo.add %4, %4 : tensor<i64>
// CHECK: br ^[[COND_ENTRY]](%5 : tensor<i64>) // CHECK: br ^[[COND_ENTRY]](%5 : tensor<i64>)
// CHECK: ^[[EXIT]](%6: tensor<i64>): // CHECK: ^[[EXIT]](%6: tensor<i64>):
// CHECK: return %6 : tensor<i64> // CHECK: return %6 : tensor<i64>
// CHECK: } // CHECK: }
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^cond_entry(%arg1: tensor<i64>): ^cond_entry(%arg1: tensor<i64>):
%1 = "xla_hlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%arg1, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^body_entry(%arg1: tensor<i64>): ^body_entry(%arg1: tensor<i64>):
br ^body_succ(%arg1: tensor<i64>) br ^body_succ(%arg1: tensor<i64>)
^body_succ(%0: tensor<i64>): ^body_succ(%0: tensor<i64>):
%1 = xla_hlo.add %0, %0 : tensor<i64> %1 = mhlo.add %0, %0 : tensor<i64>
"xla_hlo.return"(%1) : (tensor<i64>) -> () "mhlo.return"(%1) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
return %0 : tensor<i64> return %0 : tensor<i64>
@ -94,7 +94,7 @@ func @while_with_multiple_blocks_in_cond(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK: ^[[COND_ENTRY]](%0: tensor<i64>): // CHECK: ^[[COND_ENTRY]](%0: tensor<i64>):
// CHECK: br ^[[COND_SUCC:.+]](%0 : tensor<i64>) // CHECK: br ^[[COND_SUCC:.+]](%0 : tensor<i64>)
// CHECK: ^[[COND_SUCC]](%1: tensor<i64>): // CHECK: ^[[COND_SUCC]](%1: tensor<i64>):
// CHECK: %2 = "xla_hlo.compare"(%1, %1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> // CHECK: %2 = "mhlo.compare"(%1, %1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
// CHECK: %3 = extract_element %2[] : tensor<i1> // CHECK: %3 = extract_element %2[] : tensor<i1>
// CHECK: cond_br %3, ^[[BODY_ENTRY:.+]](%0 : tensor<i64>), ^[[EXIT:.+]](%0 : tensor<i64>) // CHECK: cond_br %3, ^[[BODY_ENTRY:.+]](%0 : tensor<i64>), ^[[EXIT:.+]](%0 : tensor<i64>)
// CHECK: ^[[BODY_ENTRY]](%4: tensor<i64>): // CHECK: ^[[BODY_ENTRY]](%4: tensor<i64>):
@ -102,15 +102,15 @@ func @while_with_multiple_blocks_in_cond(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK: ^[[EXIT]](%5: tensor<i64>): // CHECK: ^[[EXIT]](%5: tensor<i64>):
// CHECK: return %5 : tensor<i64> // CHECK: return %5 : tensor<i64>
// CHECK: } // CHECK: }
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^cond_entry(%arg1: tensor<i64>): ^cond_entry(%arg1: tensor<i64>):
br ^cond_succ(%arg1: tensor<i64>) br ^cond_succ(%arg1: tensor<i64>)
^cond_succ(%0: tensor<i64>): ^cond_succ(%0: tensor<i64>):
%1 = "xla_hlo.compare"(%0, %0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%0, %0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^body_entry(%arg1: tensor<i64>): ^body_entry(%arg1: tensor<i64>):
"xla_hlo.return"(%arg1) : (tensor<i64>) -> () "mhlo.return"(%arg1) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
return %0 : tensor<i64> return %0 : tensor<i64>
@ -123,24 +123,24 @@ func @conditional_with_multiple_blocks(%arg0: tensor<f32>, %arg1: tensor<f32>, %
// CHECK: ^[[THEN_ENTRY]](%1: tensor<f32>): // CHECK: ^[[THEN_ENTRY]](%1: tensor<f32>):
// CHECK: br ^[[THEN_SUCC:.+]](%1 : tensor<f32>) // CHECK: br ^[[THEN_SUCC:.+]](%1 : tensor<f32>)
// CHECK: ^[[THEN_SUCC]](%2: tensor<f32>): // CHECK: ^[[THEN_SUCC]](%2: tensor<f32>):
// CHECK: %3 = "xla_hlo.log"(%2) : (tensor<f32>) -> tensor<f32> // CHECK: %3 = "mhlo.log"(%2) : (tensor<f32>) -> tensor<f32>
// CHECK: br ^[[EXIT:.+]](%3 : tensor<f32>) // CHECK: br ^[[EXIT:.+]](%3 : tensor<f32>)
// CHECK: ^[[ELSE_ENTRY]](%4: tensor<f32>): // CHECK: ^[[ELSE_ENTRY]](%4: tensor<f32>):
// CHECK: %5 = "xla_hlo.exponential"(%4) : (tensor<f32>) -> tensor<f32> // CHECK: %5 = "mhlo.exponential"(%4) : (tensor<f32>) -> tensor<f32>
// CHECK: br ^[[EXIT]](%5 : tensor<f32>) // CHECK: br ^[[EXIT]](%5 : tensor<f32>)
// CHECK: ^[[EXIT]](%6: tensor<f32>): // CHECK: ^[[EXIT]](%6: tensor<f32>):
// CHECK: return %6 : tensor<f32> // CHECK: return %6 : tensor<f32>
// CHECK: } // CHECK: }
%1 = "xla_hlo.if"(%pred, %arg0, %arg1) ( { %1 = "mhlo.if"(%pred, %arg0, %arg1) ( {
^then_entry(%arg2: tensor<f32>): ^then_entry(%arg2: tensor<f32>):
br ^then_succ(%arg2: tensor<f32>) br ^then_succ(%arg2: tensor<f32>)
^then_succ(%0: tensor<f32>): ^then_succ(%0: tensor<f32>):
%2 = "xla_hlo.log"(%0) : (tensor<f32>) -> tensor<f32> %2 = "mhlo.log"(%0) : (tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%2) : (tensor<f32>) -> () "mhlo.return"(%2) : (tensor<f32>) -> ()
}, { }, {
^else_entry(%arg2: tensor<f32>): ^else_entry(%arg2: tensor<f32>):
%2 = "xla_hlo.exponential"(%arg2) : (tensor<f32>) -> tensor<f32> %2 = "mhlo.exponential"(%arg2) : (tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%2) : (tensor<f32>) -> () "mhlo.return"(%2) : (tensor<f32>) -> ()
}) : (tensor<i1>, tensor<f32>, tensor<f32>) -> tensor<f32> }) : (tensor<i1>, tensor<f32>, tensor<f32>) -> tensor<f32>
return %1 : tensor<f32> return %1 : tensor<f32>
} }

View File

@ -3,19 +3,19 @@
// CHECK-LABEL: func @binary_ops_float(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { // CHECK-LABEL: func @binary_ops_float(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
func @binary_ops_float(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { func @binary_ops_float(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> {
// CHECK-NEXT: %0 = addf %arg0, %arg1 : tensor<4xf32> // CHECK-NEXT: %0 = addf %arg0, %arg1 : tensor<4xf32>
%0 = "xla_hlo.add"(%arg0, %arg1) {name = "add.3"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %0 = "mhlo.add"(%arg0, %arg1) {name = "add.3"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK-NEXT: %1 = mulf %0, %arg1 : tensor<4xf32> // CHECK-NEXT: %1 = mulf %0, %arg1 : tensor<4xf32>
%1 = "xla_hlo.multiply"(%0, %arg1) {name = "mul.4"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %1 = "mhlo.multiply"(%0, %arg1) {name = "mul.4"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK-NEXT: %2 = subf %1, %arg1 : tensor<4xf32> // CHECK-NEXT: %2 = subf %1, %arg1 : tensor<4xf32>
%2 = "xla_hlo.subtract"(%1, %arg1) {name = "sub.5"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %2 = "mhlo.subtract"(%1, %arg1) {name = "sub.5"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK-NEXT: %3 = divf %2, %arg1 : tensor<4xf32> // CHECK-NEXT: %3 = divf %2, %arg1 : tensor<4xf32>
%3 = "xla_hlo.divide"(%2, %arg1) {name = "div.6"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %3 = "mhlo.divide"(%2, %arg1) {name = "div.6"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK-NEXT: %4 = remf %3, %arg1 : tensor<4xf32> // CHECK-NEXT: %4 = remf %3, %arg1 : tensor<4xf32>
%4 = "xla_hlo.remainder"(%3, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> %4 = "mhlo.remainder"(%3, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
// CHECK-NEXT: return %4 : tensor<4xf32> // CHECK-NEXT: return %4 : tensor<4xf32>
return %4 : tensor<4xf32> return %4 : tensor<4xf32>
@ -24,19 +24,19 @@ func @binary_ops_float(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf
// CHECK-LABEL: func @binary_ops_int(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>) -> tensor<4xi32> { // CHECK-LABEL: func @binary_ops_int(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>) -> tensor<4xi32> {
func @binary_ops_int(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>) -> tensor<4xi32> { func @binary_ops_int(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>) -> tensor<4xi32> {
// CHECK-NEXT: %0 = addi %arg0, %arg1 : tensor<4xi32> // CHECK-NEXT: %0 = addi %arg0, %arg1 : tensor<4xi32>
%0 = "xla_hlo.add"(%arg0, %arg1) {name = "add.3"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32> %0 = "mhlo.add"(%arg0, %arg1) {name = "add.3"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32>
// CHECK-NEXT: %1 = muli %0, %arg1 : tensor<4xi32> // CHECK-NEXT: %1 = muli %0, %arg1 : tensor<4xi32>
%1 = "xla_hlo.multiply"(%0, %arg1) {name = "mul.4"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32> %1 = "mhlo.multiply"(%0, %arg1) {name = "mul.4"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32>
// CHECK-NEXT: %2 = subi %1, %arg1 : tensor<4xi32> // CHECK-NEXT: %2 = subi %1, %arg1 : tensor<4xi32>
%2 = "xla_hlo.subtract"(%1, %arg1) {name = "sub.5"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32> %2 = "mhlo.subtract"(%1, %arg1) {name = "sub.5"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32>
// CHECK-NEXT: %3 = divi_signed %2, %arg1 : tensor<4xi32> // CHECK-NEXT: %3 = divi_signed %2, %arg1 : tensor<4xi32>
%3 = "xla_hlo.divide"(%2, %arg1) {name = "div.6"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32> %3 = "mhlo.divide"(%2, %arg1) {name = "div.6"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32>
// CHECK-NEXT: %4 = remi_signed %3, %arg1 : tensor<4xi32> // CHECK-NEXT: %4 = remi_signed %3, %arg1 : tensor<4xi32>
%4 = "xla_hlo.remainder"(%3, %arg1) : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32> %4 = "mhlo.remainder"(%3, %arg1) : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi32>
// CHECK-NEXT: return %4 : tensor<4xi32> // CHECK-NEXT: return %4 : tensor<4xi32>
return %4 : tensor<4xi32> return %4 : tensor<4xi32>
@ -45,17 +45,17 @@ func @binary_ops_int(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>) -> tensor<4xi32
// CHECK-LABEL: func @compare_int(%arg0: tensor<4xi32>) -> (tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>) { // CHECK-LABEL: func @compare_int(%arg0: tensor<4xi32>) -> (tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>) {
func @compare_int(%arg0: tensor<4xi32>) -> (tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>) { func @compare_int(%arg0: tensor<4xi32>) -> (tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>) {
// CHECK-NEXT: %0 = cmpi "eq", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %0 = cmpi "eq", %arg0, %arg0 : tensor<4xi32>
%0 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "EQ"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %0 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "EQ"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: %1 = cmpi "ne", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %1 = cmpi "ne", %arg0, %arg0 : tensor<4xi32>
%1 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "NE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %1 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "NE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: %2 = cmpi "slt", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %2 = cmpi "slt", %arg0, %arg0 : tensor<4xi32>
%2 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "LT"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %2 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "LT"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: %3 = cmpi "sle", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %3 = cmpi "sle", %arg0, %arg0 : tensor<4xi32>
%3 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "LE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %3 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "LE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: %4 = cmpi "sgt", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %4 = cmpi "sgt", %arg0, %arg0 : tensor<4xi32>
%4 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "GT"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %4 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "GT"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: %5 = cmpi "sge", %arg0, %arg0 : tensor<4xi32> // CHECK-NEXT: %5 = cmpi "sge", %arg0, %arg0 : tensor<4xi32>
%5 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "GE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> %5 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "GE"} : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
// CHECK-NEXT: return %0, %1, %2, %3, %4, %5 : tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1> // CHECK-NEXT: return %0, %1, %2, %3, %4, %5 : tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>
return %0, %1, %2, %3, %4, %5 : tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1> return %0, %1, %2, %3, %4, %5 : tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>
} }
@ -63,28 +63,28 @@ func @compare_int(%arg0: tensor<4xi32>) -> (tensor<4xi1>,tensor<4xi1>,tensor<4xi
// CHECK-LABEL: func @compare_float // CHECK-LABEL: func @compare_float
func @compare_float(%arg0: tensor<4xf32>) -> (tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>) { func @compare_float(%arg0: tensor<4xf32>) -> (tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>,tensor<4xi1>) {
// CHECK-NEXT: %0 = cmpf "oeq", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %0 = cmpf "oeq", %arg0, %arg0 : tensor<4xf32>
%0 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %0 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "EQ"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
// CHECK-NEXT: %1 = cmpf "une", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %1 = cmpf "une", %arg0, %arg0 : tensor<4xf32>
%1 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "NE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %1 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "NE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
// CHECK-NEXT: %2 = cmpf "olt", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %2 = cmpf "olt", %arg0, %arg0 : tensor<4xf32>
%2 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "LT"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %2 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "LT"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
// CHECK-NEXT: %3 = cmpf "ole", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %3 = cmpf "ole", %arg0, %arg0 : tensor<4xf32>
%3 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "LE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %3 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "LE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
// CHECK-NEXT: %4 = cmpf "ogt", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %4 = cmpf "ogt", %arg0, %arg0 : tensor<4xf32>
%4 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "GT"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %4 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "GT"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
// CHECK-NEXT: %5 = cmpf "oge", %arg0, %arg0 : tensor<4xf32> // CHECK-NEXT: %5 = cmpf "oge", %arg0, %arg0 : tensor<4xf32>
%5 = "xla_hlo.compare"(%arg0, %arg0) {comparison_direction = "GE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1> %5 = "mhlo.compare"(%arg0, %arg0) {comparison_direction = "GE"} : (tensor<4xf32>, tensor<4xf32>) -> tensor<4xi1>
return %0, %1, %2, %3, %4, %5: tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1> return %0, %1, %2, %3, %4, %5: tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>, tensor<4xi1>
} }
// CHECK-LABEL: func @int_constant // CHECK-LABEL: func @int_constant
func @int_constant() -> (tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32>) { func @int_constant() -> (tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32>) {
// CHECK-NEXT: [[CST0:%.+]] = constant {{.+}} : tensor<i32> // CHECK-NEXT: [[CST0:%.+]] = constant {{.+}} : tensor<i32>
%0 = "xla_hlo.constant"() {value = dense<0> : tensor<i32>} : () -> (tensor<i32>) %0 = "mhlo.constant"() {value = dense<0> : tensor<i32>} : () -> (tensor<i32>)
// CHECK-NEXT: [[CST1:%.+]] = constant {{.+}} : tensor<2x3xi32> // CHECK-NEXT: [[CST1:%.+]] = constant {{.+}} : tensor<2x3xi32>
%1 = "xla_hlo.constant"() {value = dense<1> : tensor<2x3xi32>} : () -> (tensor<2x3xi32>) %1 = "mhlo.constant"() {value = dense<1> : tensor<2x3xi32>} : () -> (tensor<2x3xi32>)
// CHECK-NEXT: [[CST2:%.+]] = constant {{.+}} : tensor<2x3xi32> // CHECK-NEXT: [[CST2:%.+]] = constant {{.+}} : tensor<2x3xi32>
%2 = "xla_hlo.constant"() {value = dense<[[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>} : () -> (tensor<2x3xi32>) %2 = "mhlo.constant"() {value = dense<[[1, 2, 3], [4, 5, 6]]> : tensor<2x3xi32>} : () -> (tensor<2x3xi32>)
// CHECK-NEXT: return [[CST0]], [[CST1]], [[CST2]] : tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32> // CHECK-NEXT: return [[CST0]], [[CST1]], [[CST2]] : tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32>
return %0, %1, %2: tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32> return %0, %1, %2: tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32>
} }
@ -92,11 +92,11 @@ func @int_constant() -> (tensor<i32>, tensor<2x3xi32>, tensor<2x3xi32>) {
// CHECK-LABEL: func @float_constant // CHECK-LABEL: func @float_constant
func @float_constant() -> (tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32>) { func @float_constant() -> (tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32>) {
// CHECK-NEXT: [[CST0:%.+]] = constant {{.+}} : tensor<f32> // CHECK-NEXT: [[CST0:%.+]] = constant {{.+}} : tensor<f32>
%0 = "xla_hlo.constant"() {value = dense<0.0> : tensor<f32>} : () -> (tensor<f32>) %0 = "mhlo.constant"() {value = dense<0.0> : tensor<f32>} : () -> (tensor<f32>)
// CHECK-NEXT: [[CST1:%.+]] = constant {{.+}} : tensor<2x3xf32> // CHECK-NEXT: [[CST1:%.+]] = constant {{.+}} : tensor<2x3xf32>
%1 = "xla_hlo.constant"() {value = dense<1.0> : tensor<2x3xf32>} : () -> (tensor<2x3xf32>) %1 = "mhlo.constant"() {value = dense<1.0> : tensor<2x3xf32>} : () -> (tensor<2x3xf32>)
// CHECK-NEXT: [[CST2:%.+]] = constant {{.+}} : tensor<2x3xf32> // CHECK-NEXT: [[CST2:%.+]] = constant {{.+}} : tensor<2x3xf32>
%2 = "xla_hlo.constant"() {value = dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf32>} : () -> (tensor<2x3xf32>) %2 = "mhlo.constant"() {value = dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf32>} : () -> (tensor<2x3xf32>)
// CHECK-NEXT: return [[CST0]], [[CST1]], [[CST2]] : tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32> // CHECK-NEXT: return [[CST0]], [[CST1]], [[CST2]] : tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32>
return %0, %1, %2: tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32> return %0, %1, %2: tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32>
} }
@ -105,7 +105,7 @@ func @float_constant() -> (tensor<f32>, tensor<2x3xf32>, tensor<2x3xf32>) {
// CHECK-LABEL: func @iota.const.1() -> tensor<4xi32> { // CHECK-LABEL: func @iota.const.1() -> tensor<4xi32> {
func @iota.const.1() -> tensor<4xi32> { func @iota.const.1() -> tensor<4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<[0, 1, 2, 3]> : tensor<4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<[0, 1, 2, 3]> : tensor<4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xi32> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<4xi32> // CHECK-NEXT: return %[[CST]] : tensor<4xi32>
return %0 : tensor<4xi32> return %0 : tensor<4xi32>
} }
@ -113,7 +113,7 @@ func @iota.const.1() -> tensor<4xi32> {
// CHECK-LABEL: func @iota.const.2() -> tensor<2x4xi32> { // CHECK-LABEL: func @iota.const.2() -> tensor<2x4xi32> {
func @iota.const.2() -> tensor<2x4xi32> { func @iota.const.2() -> tensor<2x4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[}}0, 0, 0, 0], [1, 1, 1, 1]]> : tensor<2x4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[}}0, 0, 0, 0], [1, 1, 1, 1]]> : tensor<2x4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<2x4xi32> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<2x4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<2x4xi32> // CHECK-NEXT: return %[[CST]] : tensor<2x4xi32>
return %0 : tensor<2x4xi32> return %0 : tensor<2x4xi32>
} }
@ -121,7 +121,7 @@ func @iota.const.2() -> tensor<2x4xi32> {
// CHECK-LABEL: func @iota.const.3() -> tensor<2x4xi32> { // CHECK-LABEL: func @iota.const.3() -> tensor<2x4xi32> {
func @iota.const.3() -> tensor<2x4xi32> { func @iota.const.3() -> tensor<2x4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[}}0, 1, 2, 3], [0, 1, 2, 3]]> : tensor<2x4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[}}0, 1, 2, 3], [0, 1, 2, 3]]> : tensor<2x4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 1 : i64} : () -> tensor<2x4xi32> %0 = "mhlo.iota"() {iota_dimension = 1 : i64} : () -> tensor<2x4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<2x4xi32> // CHECK-NEXT: return %[[CST]] : tensor<2x4xi32>
return %0 : tensor<2x4xi32> return %0 : tensor<2x4xi32>
} }
@ -129,7 +129,7 @@ func @iota.const.3() -> tensor<2x4xi32> {
// CHECK-LABEL: func @iota.const.4() -> tensor<2x3x4xi32> { // CHECK-LABEL: func @iota.const.4() -> tensor<2x3x4xi32> {
func @iota.const.4() -> tensor<2x3x4xi32> { func @iota.const.4() -> tensor<2x3x4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0{{\]\]}}, {{\[\[}}1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]> : tensor<2x3x4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0{{\]\]}}, {{\[\[}}1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]]> : tensor<2x3x4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<2x3x4xi32> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<2x3x4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32> // CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32>
return %0 : tensor<2x3x4xi32> return %0 : tensor<2x3x4xi32>
} }
@ -137,7 +137,7 @@ func @iota.const.4() -> tensor<2x3x4xi32> {
// CHECK-LABEL: func @iota.const.5() -> tensor<2x3x4xi32> { // CHECK-LABEL: func @iota.const.5() -> tensor<2x3x4xi32> {
func @iota.const.5() -> tensor<2x3x4xi32> { func @iota.const.5() -> tensor<2x3x4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2{{\]\]}}, {{\[\[}}0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]]> : tensor<2x3x4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2{{\]\]}}, {{\[\[}}0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2]]]> : tensor<2x3x4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 1 : i64} : () -> tensor<2x3x4xi32> %0 = "mhlo.iota"() {iota_dimension = 1 : i64} : () -> tensor<2x3x4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32> // CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32>
return %0 : tensor<2x3x4xi32> return %0 : tensor<2x3x4xi32>
} }
@ -145,7 +145,7 @@ func @iota.const.5() -> tensor<2x3x4xi32> {
// CHECK-LABEL: func @iota.const.6() -> tensor<2x3x4xi32> { // CHECK-LABEL: func @iota.const.6() -> tensor<2x3x4xi32> {
func @iota.const.6() -> tensor<2x3x4xi32> { func @iota.const.6() -> tensor<2x3x4xi32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3{{\]\]}}, {{\[\[}}0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]]> : tensor<2x3x4xi32> // CHECK-NEXT: %[[CST:.*]] = constant dense<{{\[\[\[}}0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3{{\]\]}}, {{\[\[}}0, 1, 2, 3], [0, 1, 2, 3], [0, 1, 2, 3]]]> : tensor<2x3x4xi32>
%0 = "xla_hlo.iota"() {iota_dimension = 2 : i64} : () -> tensor<2x3x4xi32> %0 = "mhlo.iota"() {iota_dimension = 2 : i64} : () -> tensor<2x3x4xi32>
// CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32> // CHECK-NEXT: return %[[CST]] : tensor<2x3x4xi32>
return %0 : tensor<2x3x4xi32> return %0 : tensor<2x3x4xi32>
} }
@ -153,7 +153,7 @@ func @iota.const.6() -> tensor<2x3x4xi32> {
// CHECK-LABEL: func @iota.const.f32 // CHECK-LABEL: func @iota.const.f32
func @iota.const.f32() -> tensor<4xf32> { func @iota.const.f32() -> tensor<4xf32> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf32> // CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf32>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xf32> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xf32>
// CHECK-NEXT: return %[[CST]] : tensor<4xf32> // CHECK-NEXT: return %[[CST]] : tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }
@ -161,7 +161,7 @@ func @iota.const.f32() -> tensor<4xf32> {
// CHECK-LABEL: func @iota.const.f64 // CHECK-LABEL: func @iota.const.f64
func @iota.const.f64() -> tensor<4xf64> { func @iota.const.f64() -> tensor<4xf64> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf64> // CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf64>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xf64> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xf64>
// CHECK-NEXT: return %[[CST]] : tensor<4xf64> // CHECK-NEXT: return %[[CST]] : tensor<4xf64>
return %0 : tensor<4xf64> return %0 : tensor<4xf64>
} }
@ -169,7 +169,7 @@ func @iota.const.f64() -> tensor<4xf64> {
// CHECK-LABEL: func @iota.const.bf16 // CHECK-LABEL: func @iota.const.bf16
func @iota.const.bf16() -> tensor<4xbf16> { func @iota.const.bf16() -> tensor<4xbf16> {
// CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xbf16> // CHECK-NEXT: %[[CST:.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xbf16>
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xbf16> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xbf16>
// CHECK-NEXT: return %[[CST]] : tensor<4xbf16> // CHECK-NEXT: return %[[CST]] : tensor<4xbf16>
return %0 : tensor<4xbf16> return %0 : tensor<4xbf16>
} }
@ -178,8 +178,8 @@ func @iota.const.bf16() -> tensor<4xbf16> {
func @iota.const.complex.f32() -> tensor<4xcomplex<f32>> { func @iota.const.complex.f32() -> tensor<4xcomplex<f32>> {
// CHECK-NEXT: [[REAL:%.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf32> // CHECK-NEXT: [[REAL:%.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf32>
// CHECK-NEXT: [[IMAG:%.*]] = constant dense<0.000000e+00> : tensor<4xf32> // CHECK-NEXT: [[IMAG:%.*]] = constant dense<0.000000e+00> : tensor<4xf32>
// CHECK-NEXT: [[COMPLEX:%.*]] = "xla_hlo.complex"([[REAL]], [[IMAG]]) // CHECK-NEXT: [[COMPLEX:%.*]] = "mhlo.complex"([[REAL]], [[IMAG]])
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xcomplex<f32>> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xcomplex<f32>>
// CHECK-NEXT: return [[COMPLEX]] : tensor<4xcomplex<f32>> // CHECK-NEXT: return [[COMPLEX]] : tensor<4xcomplex<f32>>
return %0 : tensor<4xcomplex<f32>> return %0 : tensor<4xcomplex<f32>>
} }
@ -188,8 +188,8 @@ func @iota.const.complex.f32() -> tensor<4xcomplex<f32>> {
func @iota.const.complex.f64() -> tensor<4xcomplex<f64>> { func @iota.const.complex.f64() -> tensor<4xcomplex<f64>> {
// CHECK-NEXT: [[REAL:%.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf64> // CHECK-NEXT: [[REAL:%.*]] = constant dense<[0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00]> : tensor<4xf64>
// CHECK-NEXT: [[IMAG:%.*]] = constant dense<0.000000e+00> : tensor<4xf64> // CHECK-NEXT: [[IMAG:%.*]] = constant dense<0.000000e+00> : tensor<4xf64>
// CHECK-NEXT: [[COMPLEX:%.*]] = "xla_hlo.complex"([[REAL]], [[IMAG]]) // CHECK-NEXT: [[COMPLEX:%.*]] = "mhlo.complex"([[REAL]], [[IMAG]])
%0 = "xla_hlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xcomplex<f64>> %0 = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<4xcomplex<f64>>
// CHECK-NEXT: return [[COMPLEX]] : tensor<4xcomplex<f64>> // CHECK-NEXT: return [[COMPLEX]] : tensor<4xcomplex<f64>>
return %0 : tensor<4xcomplex<f64>> return %0 : tensor<4xcomplex<f64>>
} }

View File

@ -396,9 +396,9 @@ func @fusion_memref(%input1: memref<10xf32>, %input2: memref<10xf32>, %input3: m
"xla_lhlo.fusion"() ( { "xla_lhlo.fusion"() ( {
%0 = tensor_load %input1 : memref<10xf32> %0 = tensor_load %input1 : memref<10xf32>
%1 = tensor_load %input2 : memref<10xf32> %1 = tensor_load %input2 : memref<10xf32>
%2 = "xla_hlo.add"(%0, %1) {name = "add"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32> %2 = "mhlo.add"(%0, %1) {name = "add"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32>
%3 = tensor_load %input3 : memref<10xf32> %3 = tensor_load %input3 : memref<10xf32>
%4 = "xla_hlo.multiply"(%2, %3) {name = "multiply"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32> %4 = "mhlo.multiply"(%2, %3) {name = "multiply"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32>
tensor_store %4, %out : memref<10xf32> tensor_store %4, %out : memref<10xf32>
"xla_lhlo.terminator"() : () -> () "xla_lhlo.terminator"() : () -> ()
} ) : () -> () } ) : () -> ()
@ -803,15 +803,15 @@ func @shift_right_logical_memrefs(%arg0: memref<1xf32>, %arg1: memref<1xf32>, %a
func @all_reduce_memrefs(%arg0: memref<10xf32>, %arg_out: memref<10xf32>) -> () { func @all_reduce_memrefs(%arg0: memref<10xf32>, %arg_out: memref<10xf32>) -> () {
"xla_lhlo.all_reduce"(%arg0, %arg_out) ({ "xla_lhlo.all_reduce"(%arg0, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>): ^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>):
%max = xla_hlo.maximum %lhs, %rhs : tensor<f32> %max = mhlo.maximum %lhs, %rhs : tensor<f32>
"xla_hlo.return"(%max) : (tensor<f32>) -> () "mhlo.return"(%max) : (tensor<f32>) -> ()
}) })
{ replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64> }: (memref<10xf32>, memref<10xf32>) -> () { replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64> }: (memref<10xf32>, memref<10xf32>) -> ()
"xla_lhlo.all_reduce"(%arg0, %arg_out) ({ "xla_lhlo.all_reduce"(%arg0, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>): ^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>):
%max = xla_hlo.maximum %lhs, %rhs : tensor<f32> %max = mhlo.maximum %lhs, %rhs : tensor<f32>
"xla_hlo.return"(%max) : (tensor<f32>) -> () "mhlo.return"(%max) : (tensor<f32>) -> ()
}) })
{ {
replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64>, replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64>,
@ -958,8 +958,8 @@ func @scatter_memrefs(%input: memref<200x100x300xf32>, %indices: memref<10x2xi32
%updates: memref<10x300xf32>, %arg_out: memref<200x100x300xf32>) -> () { %updates: memref<10x300xf32>, %arg_out: memref<200x100x300xf32>) -> () {
"xla_lhlo.scatter" (%input, %indices, %updates, %arg_out) ({ "xla_lhlo.scatter" (%input, %indices, %updates, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>): // no predecessors ^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>): // no predecessors
%add = xla_hlo.add %lhs, %rhs : tensor<f32> %add = mhlo.add %lhs, %rhs : tensor<f32>
"xla_hlo.return"(%add) : (tensor<f32>) -> () "mhlo.return"(%add) : (tensor<f32>) -> ()
}) { }) {
scatter_dimension_numbers = { scatter_dimension_numbers = {
update_window_dims = dense<[1]> : tensor<1xi64>, update_window_dims = dense<[1]> : tensor<1xi64>,
@ -979,8 +979,8 @@ func @scatter_memrefs(%input: memref<200x100x300xf32>, %indices: memref<10x2xi32
func @map_memrefs(%arg0: memref<20xf32>, %arg1: memref<20xf32>, %arg_out: memref<20xf32>) -> () { func @map_memrefs(%arg0: memref<20xf32>, %arg1: memref<20xf32>, %arg_out: memref<20xf32>) -> () {
"xla_lhlo.map"(%arg0, %arg1, %arg_out) ({ "xla_lhlo.map"(%arg0, %arg1, %arg_out) ({
^bb0(%a: tensor<f32>, %b: tensor<f32>): ^bb0(%a: tensor<f32>, %b: tensor<f32>):
%c = xla_hlo.add %a, %b : tensor<f32> %c = mhlo.add %a, %b : tensor<f32>
"xla_hlo.return"(%c) : (tensor<f32>) -> () "mhlo.return"(%c) : (tensor<f32>) -> ()
}) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<20xf32>) -> () }) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<20xf32>) -> ()
return return
} }
@ -991,8 +991,8 @@ func @map_memrefs(%arg0: memref<20xf32>, %arg1: memref<20xf32>, %arg_out: memref
// expected-error@+1{{requires the same shape for all operands}} // expected-error@+1{{requires the same shape for all operands}}
"xla_lhlo.map"(%arg0, %arg1, %arg_out) ({ "xla_lhlo.map"(%arg0, %arg1, %arg_out) ({
^bb0(%a: tensor<f32>, %b: tensor<f32>): ^bb0(%a: tensor<f32>, %b: tensor<f32>):
%c = xla_hlo.add %a, %b : tensor<f32> %c = mhlo.add %a, %b : tensor<f32>
"xla_hlo.return"(%c) : (tensor<f32>) -> () "mhlo.return"(%c) : (tensor<f32>) -> ()
}) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<10xf32>) -> () }) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<10xf32>) -> ()
return return
} }
@ -1012,8 +1012,8 @@ func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () { %out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( { "xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>): ^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "xla_hlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1> %7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"xla_hlo.return"(%7) : (tensor<i1>) -> () "mhlo.return"(%7) : (tensor<i1>) -> ()
}) {dimension = 1 : i64, is_stable = true} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> () }) {dimension = 1 : i64, is_stable = true} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return return
} }
@ -1025,8 +1025,8 @@ func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () { %out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( { "xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>): ^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "xla_hlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1> %7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"xla_hlo.return"(%7) : (tensor<i1>) -> () "mhlo.return"(%7) : (tensor<i1>) -> ()
}) {dimension = 1 : i64} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> () }) {dimension = 1 : i64} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return return
} }
@ -1038,8 +1038,8 @@ func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () { %out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( { "xla_lhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>): ^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "xla_hlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1> %7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"xla_hlo.return"(%7) : (tensor<i1>) -> () "mhlo.return"(%7) : (tensor<i1>) -> ()
}) : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> () }) : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return return
} }

View File

@ -2,14 +2,14 @@
// CHECK-LABEL: @add // CHECK-LABEL: @add
func @add(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) { func @add(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.add %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.add %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.add %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.add %arg1, %arg3
%4 = "xla_hlo.add"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %4 = "mhlo.add"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %5 = "mhlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %6 = "mhlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return [[VAL0]], [[VAL1]] // CHECK: return [[VAL0]], [[VAL1]]
return %5, %6 : tensor<2xf32>, tensor<2xf32> return %5, %6 : tensor<2xf32>, tensor<2xf32>
@ -17,14 +17,14 @@ func @add(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %
// CHECK-LABEL: @add_unranked // CHECK-LABEL: @add_unranked
func @add_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) { func @add_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.add %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.add %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.add %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.add %arg1, %arg3
%4 = "xla_hlo.add"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>) %4 = "mhlo.add"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %5 = "mhlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %6 = "mhlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
// CHECK: return [[VAL0]], [[VAL1]] // CHECK: return [[VAL0]], [[VAL1]]
return %5, %6 : tensor<*xf32>, tensor<*xf32> return %5, %6 : tensor<*xf32>, tensor<*xf32>
@ -32,14 +32,14 @@ func @add_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<
// CHECK-LABEL: @sub // CHECK-LABEL: @sub
func @sub(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) { func @sub(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.subtract %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.subtract %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.subtract %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.subtract %arg1, %arg3
%4 = "xla_hlo.subtract"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %4 = "mhlo.subtract"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %5 = "mhlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %6 = "mhlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return [[VAL0]], [[VAL1]] // CHECK: return [[VAL0]], [[VAL1]]
return %5, %6 : tensor<2xf32>, tensor<2xf32> return %5, %6 : tensor<2xf32>, tensor<2xf32>
@ -47,14 +47,14 @@ func @sub(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %
// CHECK-LABEL: @sub_unranked // CHECK-LABEL: @sub_unranked
func @sub_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) { func @sub_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.subtract %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.subtract %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.subtract %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.subtract %arg1, %arg3
%4 = "xla_hlo.subtract"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>) %4 = "mhlo.subtract"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %5 = "mhlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %6 = "mhlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
// CHECK: return [[VAL0]], [[VAL1]] // CHECK: return [[VAL0]], [[VAL1]]
return %5, %6 : tensor<*xf32>, tensor<*xf32> return %5, %6 : tensor<*xf32>, tensor<*xf32>
@ -62,18 +62,18 @@ func @sub_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<
// CHECK-LABEL: @mul // CHECK-LABEL: @mul
func @mul(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) { func @mul(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.multiply %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.multiply %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.multiply %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.multiply %arg1, %arg3
// CHECK-DAG: [[VAL2:%.+]] = xla_hlo.subtract [[VAL0]], [[VAL1]] // CHECK-DAG: [[VAL2:%.+]] = mhlo.subtract [[VAL0]], [[VAL1]]
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.multiply %arg0, %arg3 // CHECK-DAG: [[VAL3:%.+]] = mhlo.multiply %arg0, %arg3
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply %arg1, %arg2 // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply %arg1, %arg2
// CHECK-DAG: [[VAL5:%.+]] = xla_hlo.add [[VAL3]], [[VAL4]] // CHECK-DAG: [[VAL5:%.+]] = mhlo.add [[VAL3]], [[VAL4]]
%4 = "xla_hlo.multiply"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %4 = "mhlo.multiply"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %5 = "mhlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %6 = "mhlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return %2, %5 : tensor<2xf32>, tensor<2xf32> // CHECK: return %2, %5 : tensor<2xf32>, tensor<2xf32>
return %5, %6 : tensor<2xf32>, tensor<2xf32> return %5, %6 : tensor<2xf32>, tensor<2xf32>
@ -81,18 +81,18 @@ func @mul(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %
// CHECK-LABEL: @mul_unranked // CHECK-LABEL: @mul_unranked
func @mul_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) { func @mul_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.multiply %arg0, %arg2 // CHECK-DAG: [[VAL0:%.+]] = mhlo.multiply %arg0, %arg2
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.multiply %arg1, %arg3 // CHECK-DAG: [[VAL1:%.+]] = mhlo.multiply %arg1, %arg3
// CHECK-DAG: [[VAL2:%.+]] = xla_hlo.subtract [[VAL0]], [[VAL1]] // CHECK-DAG: [[VAL2:%.+]] = mhlo.subtract [[VAL0]], [[VAL1]]
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.multiply %arg0, %arg3 // CHECK-DAG: [[VAL3:%.+]] = mhlo.multiply %arg0, %arg3
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply %arg1, %arg2 // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply %arg1, %arg2
// CHECK-DAG: [[VAL5:%.+]] = xla_hlo.add [[VAL3]], [[VAL4]] // CHECK-DAG: [[VAL5:%.+]] = mhlo.add [[VAL3]], [[VAL4]]
%4 = "xla_hlo.multiply"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>) %4 = "mhlo.multiply"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %5 = "mhlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %6 = "mhlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
// CHECK: return %2, %5 : tensor<*xf32>, tensor<*xf32> // CHECK: return %2, %5 : tensor<*xf32>, tensor<*xf32>
return %5, %6 : tensor<*xf32>, tensor<*xf32> return %5, %6 : tensor<*xf32>, tensor<*xf32>
@ -100,36 +100,36 @@ func @mul_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<
// CHECK-LABEL: @div // CHECK-LABEL: @div
func @div(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) { func @div(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %arg3 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = "xla_hlo.negate"(%arg3) // CHECK-DAG: [[VAL0:%.+]] = "mhlo.negate"(%arg3)
// Compute the numerator's real component: // Compute the numerator's real component:
// numerator.real = lhs.real * rhs.real lhs.imag * rhs.imag // numerator.real = lhs.real * rhs.real lhs.imag * rhs.imag
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.multiply %arg0, %arg2 // CHECK-DAG: [[VAL1:%.+]] = mhlo.multiply %arg0, %arg2
// CHECK-DAG: [[VAL2:%.+]] = xla_hlo.multiply %arg1, [[VAL0]] // CHECK-DAG: [[VAL2:%.+]] = mhlo.multiply %arg1, [[VAL0]]
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.subtract [[VAL1]], [[VAL2]] // CHECK-DAG: [[VAL3:%.+]] = mhlo.subtract [[VAL1]], [[VAL2]]
// Compute the real valued denominator as rhs * con(rhs): // Compute the real valued denominator as rhs * con(rhs):
// denominator = rhs.real * rhs.real + rhs.imag * rhs.imag // denominator = rhs.real * rhs.real + rhs.imag * rhs.imag
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply %arg2, %arg2 // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply %arg2, %arg2
// CHECK-DAG: [[VAL5:%.+]] = xla_hlo.multiply %arg3, [[VAL0]] // CHECK-DAG: [[VAL5:%.+]] = mhlo.multiply %arg3, [[VAL0]]
// CHECK-DAG: [[VAL6:%.+]] = xla_hlo.subtract [[VAL4]], [[VAL5]] // CHECK-DAG: [[VAL6:%.+]] = mhlo.subtract [[VAL4]], [[VAL5]]
// Compute the numerator's imaginary component: // Compute the numerator's imaginary component:
// numerator.imag = lhs.imag * rhs.real - lhs.real * rhs.imag // numerator.imag = lhs.imag * rhs.real - lhs.real * rhs.imag
// CHECK-DAG: [[VAL7:%.+]] = xla_hlo.multiply %arg1, %arg2 // CHECK-DAG: [[VAL7:%.+]] = mhlo.multiply %arg1, %arg2
// CHECK-DAG: [[VAL8:%.+]] = xla_hlo.multiply %arg0, [[VAL0]] // CHECK-DAG: [[VAL8:%.+]] = mhlo.multiply %arg0, [[VAL0]]
// CHECK-DAG: [[VAL9:%.+]] = xla_hlo.add [[VAL8]], [[VAL7]] // CHECK-DAG: [[VAL9:%.+]] = mhlo.add [[VAL8]], [[VAL7]]
// Divide the numerator by the real valued denominator. // Divide the numerator by the real valued denominator.
// CHECK-DAG: [[VAL10:%.+]] = xla_hlo.divide [[VAL3]], [[VAL6]] // CHECK-DAG: [[VAL10:%.+]] = mhlo.divide [[VAL3]], [[VAL6]]
// CHECK-DAG: [[VAL11:%.+]] = xla_hlo.divide [[VAL9]], [[VAL6]] // CHECK-DAG: [[VAL11:%.+]] = mhlo.divide [[VAL9]], [[VAL6]]
%4 = "xla_hlo.divide"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %4 = "mhlo.divide"(%2, %3) : (tensor<2xcomplex<f32>>, tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %5 = "mhlo.real"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %6 = "mhlo.imag"(%4) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return [[VAL10]], [[VAL11]] // CHECK: return [[VAL10]], [[VAL11]]
return %5, %6 : tensor<2xf32>, tensor<2xf32> return %5, %6 : tensor<2xf32>, tensor<2xf32>
@ -139,36 +139,36 @@ func @div(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>, %arg2 : tensor<2xf32>, %
// CHECK-LABEL: @div_unranked // CHECK-LABEL: @div_unranked
func @div_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) { func @div_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>, %arg3 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%2 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %2 = "mhlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
%3 = "xla_hlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %3 = "mhlo.complex"(%arg2, %arg3) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = "xla_hlo.negate"(%arg3) // CHECK-DAG: [[VAL0:%.+]] = "mhlo.negate"(%arg3)
// Compute the numerator's real component: // Compute the numerator's real component:
// numerator.real = lhs.real * rhs.real lhs.imag * rhs.imag // numerator.real = lhs.real * rhs.real lhs.imag * rhs.imag
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.multiply %arg0, %arg2 // CHECK-DAG: [[VAL1:%.+]] = mhlo.multiply %arg0, %arg2
// CHECK-DAG: [[VAL2:%.+]] = xla_hlo.multiply %arg1, [[VAL0]] // CHECK-DAG: [[VAL2:%.+]] = mhlo.multiply %arg1, [[VAL0]]
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.subtract [[VAL1]], [[VAL2]] // CHECK-DAG: [[VAL3:%.+]] = mhlo.subtract [[VAL1]], [[VAL2]]
// Compute the real valued denominator as rhs * con(rhs): // Compute the real valued denominator as rhs * con(rhs):
// denominator = rhs.real * rhs.real + rhs.imag * rhs.imag // denominator = rhs.real * rhs.real + rhs.imag * rhs.imag
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply %arg2, %arg2 // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply %arg2, %arg2
// CHECK-DAG: [[VAL5:%.+]] = xla_hlo.multiply %arg3, [[VAL0]] // CHECK-DAG: [[VAL5:%.+]] = mhlo.multiply %arg3, [[VAL0]]
// CHECK-DAG: [[VAL6:%.+]] = xla_hlo.subtract [[VAL4]], [[VAL5]] // CHECK-DAG: [[VAL6:%.+]] = mhlo.subtract [[VAL4]], [[VAL5]]
// Compute the numerator's imaginary component: // Compute the numerator's imaginary component:
// numerator.imag = lhs.imag * rhs.real - lhs.real * rhs.imag // numerator.imag = lhs.imag * rhs.real - lhs.real * rhs.imag
// CHECK-DAG: [[VAL7:%.+]] = xla_hlo.multiply %arg1, %arg2 // CHECK-DAG: [[VAL7:%.+]] = mhlo.multiply %arg1, %arg2
// CHECK-DAG: [[VAL8:%.+]] = xla_hlo.multiply %arg0, [[VAL0]] // CHECK-DAG: [[VAL8:%.+]] = mhlo.multiply %arg0, [[VAL0]]
// CHECK-DAG: [[VAL9:%.+]] = xla_hlo.add [[VAL8]], [[VAL7]] // CHECK-DAG: [[VAL9:%.+]] = mhlo.add [[VAL8]], [[VAL7]]
// Divide the numerator by the real valued denominator. // Divide the numerator by the real valued denominator.
// CHECK-DAG: [[VAL10:%.+]] = xla_hlo.divide [[VAL3]], [[VAL6]] // CHECK-DAG: [[VAL10:%.+]] = mhlo.divide [[VAL3]], [[VAL6]]
// CHECK-DAG: [[VAL11:%.+]] = xla_hlo.divide [[VAL9]], [[VAL6]] // CHECK-DAG: [[VAL11:%.+]] = mhlo.divide [[VAL9]], [[VAL6]]
%4 = "xla_hlo.divide"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>) %4 = "mhlo.divide"(%2, %3) : (tensor<*xcomplex<f32>>, tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
%5 = "xla_hlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %5 = "mhlo.real"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
%6 = "xla_hlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %6 = "mhlo.imag"(%4) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
// CHECK: return [[VAL10]], [[VAL11]] // CHECK: return [[VAL10]], [[VAL11]]
return %5, %6 : tensor<*xf32>, tensor<*xf32> return %5, %6 : tensor<*xf32>, tensor<*xf32>
@ -176,14 +176,14 @@ func @div_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<
// CHECK-LABEL: @abs // CHECK-LABEL: @abs
func @abs(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>) { func @abs(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>) {
%0 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %0 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = xla_hlo.multiply %arg0, %arg0 // CHECK-DAG: [[VAL0:%.+]] = mhlo.multiply %arg0, %arg0
// CHECK-DAG: [[VAL1:%.+]] = xla_hlo.multiply %arg1, %arg1 // CHECK-DAG: [[VAL1:%.+]] = mhlo.multiply %arg1, %arg1
// CHECK-DAG: [[VAL2:%.+]] = xla_hlo.add [[VAL0]], [[VAL1]] // CHECK-DAG: [[VAL2:%.+]] = mhlo.add [[VAL0]], [[VAL1]]
// CHECK-DAG: [[VAL3:%.+]] = "xla_hlo.sqrt"([[VAL2]]) // CHECK-DAG: [[VAL3:%.+]] = "mhlo.sqrt"([[VAL2]])
%1 = "xla_hlo.abs"(%0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %1 = "mhlo.abs"(%0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%2 = "xla_hlo.real"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %2 = "mhlo.real"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return [[VAL3]] // CHECK: return [[VAL3]]
return %2 : tensor<2xf32> return %2 : tensor<2xf32>
@ -191,16 +191,16 @@ func @abs(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>) {
// CHECK-LABEL: @exp // CHECK-LABEL: @exp
func @exp(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) { func @exp(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>, tensor<2xf32>) {
%0 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>) %0 = "mhlo.complex"(%arg0, %arg1) : (tensor<2xf32>, tensor<2xf32>) -> (tensor<2xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = "xla_hlo.exponential"(%arg0) // CHECK-DAG: [[VAL0:%.+]] = "mhlo.exponential"(%arg0)
// CHECK-DAG: [[VAL1:%.+]] = "xla_hlo.cosine"(%arg1) // CHECK-DAG: [[VAL1:%.+]] = "mhlo.cosine"(%arg1)
// CHECK-DAG: [[VAL2:%.+]] = "xla_hlo.sine"(%arg1) // CHECK-DAG: [[VAL2:%.+]] = "mhlo.sine"(%arg1)
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.multiply [[VAL0]], [[VAL1]] // CHECK-DAG: [[VAL3:%.+]] = mhlo.multiply [[VAL0]], [[VAL1]]
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply [[VAL0]], [[VAL2]] // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply [[VAL0]], [[VAL2]]
%1 = "xla_hlo.exponential"(%0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>) %1 = "mhlo.exponential"(%0) : (tensor<2xcomplex<f32>>) -> (tensor<2xcomplex<f32>>)
%2 = "xla_hlo.real"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %2 = "mhlo.real"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
%3 = "xla_hlo.imag"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>) %3 = "mhlo.imag"(%1) : (tensor<2xcomplex<f32>>) -> (tensor<2xf32>)
// CHECK: return [[VAL3]], [[VAL4]] // CHECK: return [[VAL3]], [[VAL4]]
return %2, %3 : tensor<2xf32>, tensor<2xf32> return %2, %3 : tensor<2xf32>, tensor<2xf32>
@ -208,16 +208,16 @@ func @exp(%arg0 : tensor<2xf32>, %arg1 : tensor<2xf32>) -> (tensor<2xf32>, tenso
// CHECK-LABEL: @exp_unranked // CHECK-LABEL: @exp_unranked
func @exp_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) { func @exp_unranked(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>) -> (tensor<*xf32>, tensor<*xf32>) {
%0 = "xla_hlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>) %0 = "mhlo.complex"(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> (tensor<*xcomplex<f32>>)
// CHECK-DAG: [[VAL0:%.+]] = "xla_hlo.exponential"(%arg0) // CHECK-DAG: [[VAL0:%.+]] = "mhlo.exponential"(%arg0)
// CHECK-DAG: [[VAL1:%.+]] = "xla_hlo.cosine"(%arg1) // CHECK-DAG: [[VAL1:%.+]] = "mhlo.cosine"(%arg1)
// CHECK-DAG: [[VAL2:%.+]] = "xla_hlo.sine"(%arg1) // CHECK-DAG: [[VAL2:%.+]] = "mhlo.sine"(%arg1)
// CHECK-DAG: [[VAL3:%.+]] = xla_hlo.multiply [[VAL0]], [[VAL1]] // CHECK-DAG: [[VAL3:%.+]] = mhlo.multiply [[VAL0]], [[VAL1]]
// CHECK-DAG: [[VAL4:%.+]] = xla_hlo.multiply [[VAL0]], [[VAL2]] // CHECK-DAG: [[VAL4:%.+]] = mhlo.multiply [[VAL0]], [[VAL2]]
%1 = "xla_hlo.exponential"(%0) : (tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>) %1 = "mhlo.exponential"(%0) : (tensor<*xcomplex<f32>>) -> (tensor<*xcomplex<f32>>)
%2 = "xla_hlo.real"(%1) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %2 = "mhlo.real"(%1) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
%3 = "xla_hlo.imag"(%1) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>) %3 = "mhlo.imag"(%1) : (tensor<*xcomplex<f32>>) -> (tensor<*xf32>)
// CHECK: return [[VAL3]], [[VAL4]] // CHECK: return [[VAL3]], [[VAL4]]
return %2, %3 : tensor<*xf32>, tensor<*xf32> return %2, %3 : tensor<*xf32>, tensor<*xf32>

View File

@ -2,10 +2,10 @@
// CHECK-LABEL: @testDebatch1 // CHECK-LABEL: @testDebatch1
func @testDebatch1(%arg0: tensor<1x1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1x1x3xf32> { func @testDebatch1(%arg0: tensor<1x1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1x1x3xf32> {
// CHECK-DAG: [[R0:%.+]] = "xla_hlo.reshape"(%arg0) : (tensor<1x1x2xf32>) -> tensor<1x2xf32> // CHECK-DAG: [[R0:%.+]] = "mhlo.reshape"(%arg0) : (tensor<1x1x2xf32>) -> tensor<1x2xf32>
// CHECK-DAG: [[R1:%.+]] = "xla_hlo.dot"([[R0]], %arg1) {precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32> // CHECK-DAG: [[R1:%.+]] = "mhlo.dot"([[R0]], %arg1) {precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x2xf32>, tensor<2x3xf32>) -> tensor<1x3xf32>
// CHECK: [[R2:%.+]] = "xla_hlo.reshape"([[R1]]) : (tensor<1x3xf32>) -> tensor<1x1x3xf32> // CHECK: [[R2:%.+]] = "mhlo.reshape"([[R1]]) : (tensor<1x3xf32>) -> tensor<1x1x3xf32>
%0 = "xla_hlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<[]> : tensor<0xi64>, rhs_contracting_dimensions = dense<0> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x1x2xf32>, tensor<2x3xf32>) -> tensor<1x1x3xf32> %0 = "mhlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<[]> : tensor<0xi64>, rhs_contracting_dimensions = dense<0> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<1x1x2xf32>, tensor<2x3xf32>) -> tensor<1x1x3xf32>
return %0 : tensor<1x1x3xf32> return %0 : tensor<1x1x3xf32>
} }
@ -14,13 +14,13 @@ func @testDebatch1(%arg0: tensor<1x1x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<1
// CHECK-LABEL: @testDebatch2 // CHECK-LABEL: @testDebatch2
func @testDebatch2(%arg0: tensor<2x3xf32>, %arg1: tensor<1x1x2xf32>) -> tensor<3x1x1xf32> { func @testDebatch2(%arg0: tensor<2x3xf32>, %arg1: tensor<1x1x2xf32>) -> tensor<3x1x1xf32> {
// CHECK-DAG: [[R0:%.+]] = "xla_hlo.transpose"(%arg0) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x3xf32>) -> tensor<3x2xf32> // CHECK-DAG: [[R0:%.+]] = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x3xf32>) -> tensor<3x2xf32>
// CHECK-DAG: [[R1:%.+]] = "xla_hlo.transpose"(%arg1) {permutation = dense<[2, 0, 1]> : tensor<3xi64>} : (tensor<1x1x2xf32>) -> tensor<2x1x1xf32> // CHECK-DAG: [[R1:%.+]] = "mhlo.transpose"(%arg1) {permutation = dense<[2, 0, 1]> : tensor<3xi64>} : (tensor<1x1x2xf32>) -> tensor<2x1x1xf32>
// CHECK-DAG: [[R2:%.+]] = "xla_hlo.reshape"([[R1]]) : (tensor<2x1x1xf32>) -> tensor<2x1xf32> // CHECK-DAG: [[R2:%.+]] = "mhlo.reshape"([[R1]]) : (tensor<2x1x1xf32>) -> tensor<2x1xf32>
// CHECK-DAG: [[R3:%.+]] = "xla_hlo.dot"([[R0]], [[R2]]) {precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<3x2xf32>, tensor<2x1xf32>) -> tensor<3x1xf32> // CHECK-DAG: [[R3:%.+]] = "mhlo.dot"([[R0]], [[R2]]) {precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<3x2xf32>, tensor<2x1xf32>) -> tensor<3x1xf32>
// CHECK: [[R4:%.+]] = "xla_hlo.reshape"([[R3]]) : (tensor<3x1xf32>) -> tensor<3x1x1xf32> // CHECK: [[R4:%.+]] = "mhlo.reshape"([[R3]]) : (tensor<3x1xf32>) -> tensor<3x1x1xf32>
%0 = "xla_hlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<0> : tensor<1xi64>, rhs_batching_dimensions = dense<[]> : tensor<0xi64>, rhs_contracting_dimensions = dense<2> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<2x3xf32>, tensor<1x1x2xf32>) -> tensor<3x1x1xf32> %0 = "mhlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[]> : tensor<0xi64>, lhs_contracting_dimensions = dense<0> : tensor<1xi64>, rhs_batching_dimensions = dense<[]> : tensor<0xi64>, rhs_contracting_dimensions = dense<2> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<2x3xf32>, tensor<1x1x2xf32>) -> tensor<3x1x1xf32>
return %0 : tensor<3x1x1xf32> return %0 : tensor<3x1x1xf32>
} }
@ -28,8 +28,8 @@ func @testDebatch2(%arg0: tensor<2x3xf32>, %arg1: tensor<1x1x2xf32>) -> tensor<3
// CHECK-LABEL: @testBatchPassthrough // CHECK-LABEL: @testBatchPassthrough
func @testBatchPassthrough(%arg0: tensor<2x2x3xf32>, %arg1: tensor<2x1x2xf32>) -> tensor<3x2x1xf32> { func @testBatchPassthrough(%arg0: tensor<2x2x3xf32>, %arg1: tensor<2x1x2xf32>) -> tensor<3x2x1xf32> {
// CHECK-NEXT: "xla_hlo.dot_general"(%arg0, %arg1) // CHECK-NEXT: "mhlo.dot_general"(%arg0, %arg1)
%0 = "xla_hlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[0]> : tensor<1xi64>, lhs_contracting_dimensions = dense<1> : tensor<1xi64>, rhs_batching_dimensions = dense<[0]> : tensor<1xi64>, rhs_contracting_dimensions = dense<2> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<2x2x3xf32>, tensor<2x1x2xf32>) -> tensor<3x2x1xf32> %0 = "mhlo.dot_general"(%arg0, %arg1) {dot_dimension_numbers = {lhs_batching_dimensions = dense<[0]> : tensor<1xi64>, lhs_contracting_dimensions = dense<1> : tensor<1xi64>, rhs_batching_dimensions = dense<[0]> : tensor<1xi64>, rhs_contracting_dimensions = dense<2> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<2x2x3xf32>, tensor<2x1x2xf32>) -> tensor<3x2x1xf32>
return %0 : tensor<3x2x1xf32> return %0 : tensor<3x2x1xf32>
} }

View File

@ -3,9 +3,9 @@
// CHECK-LABEL: @clampBroadcast // CHECK-LABEL: @clampBroadcast
// CHECK-SAME: (%[[MIN:.+]]: tensor<f32>, %[[VAL:.+]]: tensor<4xf32>, %[[MAX:.+]]: tensor<f32>) // CHECK-SAME: (%[[MIN:.+]]: tensor<f32>, %[[VAL:.+]]: tensor<4xf32>, %[[MAX:.+]]: tensor<f32>)
func @clampBroadcast(%min: tensor<f32>, %value: tensor<4xf32>, %max: tensor<f32>) -> tensor<4xf32> { func @clampBroadcast(%min: tensor<f32>, %value: tensor<4xf32>, %max: tensor<f32>) -> tensor<4xf32> {
// CHECK-DAG: %[[MIN_BC:.+]] = "xla_hlo.broadcast"(%[[MIN]]) {broadcast_sizes = dense<4> : tensor<1xi64>} : (tensor<f32>) -> tensor<4xf32> // CHECK-DAG: %[[MIN_BC:.+]] = "mhlo.broadcast"(%[[MIN]]) {broadcast_sizes = dense<4> : tensor<1xi64>} : (tensor<f32>) -> tensor<4xf32>
// CHECK-DAG: %[[MAX_BC:.+]] = "xla_hlo.broadcast"(%[[MAX]]) {broadcast_sizes = dense<4> : tensor<1xi64>} : (tensor<f32>) -> tensor<4xf32> // CHECK-DAG: %[[MAX_BC:.+]] = "mhlo.broadcast"(%[[MAX]]) {broadcast_sizes = dense<4> : tensor<1xi64>} : (tensor<f32>) -> tensor<4xf32>
// CHECK: "xla_hlo.clamp"(%[[MIN_BC]], %[[VAL]], %[[MAX_BC]]) : (tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> // CHECK: "mhlo.clamp"(%[[MIN_BC]], %[[VAL]], %[[MAX_BC]]) : (tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32>
%0 = "xla_hlo.clamp"(%min, %value, %max) : (tensor<f32>, tensor<4xf32>, tensor<f32>) -> tensor<4xf32> %0 = "mhlo.clamp"(%min, %value, %max) : (tensor<f32>, tensor<4xf32>, tensor<f32>) -> tensor<4xf32>
return %0 : tensor<4xf32> return %0 : tensor<4xf32>
} }

File diff suppressed because it is too large Load Diff

View File

@ -4,11 +4,11 @@
// CHECK-SAME: (%[[ARG0:.*]]: tensor<4x8xf32>) // CHECK-SAME: (%[[ARG0:.*]]: tensor<4x8xf32>)
// CHECK: return %[[ARG0]] // CHECK: return %[[ARG0]]
func @noop(%arg0: tensor<4x8xf32>) -> tensor<4x8xf32> { func @noop(%arg0: tensor<4x8xf32>) -> tensor<4x8xf32> {
%0 = xla_hlo.constant dense<0.000000e+00> : tensor<f32> %0 = mhlo.constant dense<0.000000e+00> : tensor<f32>
%2 = "xla_hlo.reduce"(%arg0, %0) ( { %2 = "mhlo.reduce"(%arg0, %0) ( {
^bb0(%arg1: tensor<f32>, %arg2: tensor<f32>): ^bb0(%arg1: tensor<f32>, %arg2: tensor<f32>):
%4 = xla_hlo.add %arg1, %arg2 : tensor<f32> %4 = mhlo.add %arg1, %arg2 : tensor<f32>
"xla_hlo.return"(%4) : (tensor<f32>) -> () "mhlo.return"(%4) : (tensor<f32>) -> ()
}) {dimensions = dense<[]> : tensor<0xi64>} : (tensor<4x8xf32>, tensor<f32>) -> tensor<4x8xf32> }) {dimensions = dense<[]> : tensor<0xi64>} : (tensor<4x8xf32>, tensor<f32>) -> tensor<4x8xf32>
return %2 : tensor<4x8xf32> return %2 : tensor<4x8xf32>
} }

View File

@ -2,9 +2,9 @@
// CHECK-LABEL: func @const_fold_collapse_to_scalar // CHECK-LABEL: func @const_fold_collapse_to_scalar
func @const_fold_collapse_to_scalar() -> tensor<i32> { func @const_fold_collapse_to_scalar() -> tensor<i32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<i32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<i32>
%cst = xla_hlo.constant dense<42> : tensor<1x1xi32> %cst = mhlo.constant dense<42> : tensor<1x1xi32>
%0 = "xla_hlo.reshape"(%cst) : (tensor<1x1xi32>) -> tensor<i32> %0 = "mhlo.reshape"(%cst) : (tensor<1x1xi32>) -> tensor<i32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<i32> return %0 : tensor<i32>
} }
@ -13,9 +13,9 @@ func @const_fold_collapse_to_scalar() -> tensor<i32> {
// CHECK-LABEL: func @const_fold_collapse_to_tensor // CHECK-LABEL: func @const_fold_collapse_to_tensor
func @const_fold_collapse_to_tensor() -> tensor<2xi32> { func @const_fold_collapse_to_tensor() -> tensor<2xi32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<2xi32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<2xi32>
%cst = xla_hlo.constant dense<42> : tensor<1x2xi32> %cst = mhlo.constant dense<42> : tensor<1x2xi32>
%0 = "xla_hlo.reshape"(%cst) : (tensor<1x2xi32>) -> tensor<2xi32> %0 = "mhlo.reshape"(%cst) : (tensor<1x2xi32>) -> tensor<2xi32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<2xi32> return %0 : tensor<2xi32>
} }
@ -24,9 +24,9 @@ func @const_fold_collapse_to_tensor() -> tensor<2xi32> {
// CHECK-LABEL: func @const_fold_expand // CHECK-LABEL: func @const_fold_expand
func @const_fold_expand() -> tensor<1xi32> { func @const_fold_expand() -> tensor<1xi32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<1xi32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<1xi32>
%cst = xla_hlo.constant dense<42> : tensor<i32> %cst = mhlo.constant dense<42> : tensor<i32>
%0 = "xla_hlo.reshape"(%cst) : (tensor<i32>) -> tensor<1xi32> %0 = "mhlo.reshape"(%cst) : (tensor<i32>) -> tensor<1xi32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<1xi32> return %0 : tensor<1xi32>
} }
@ -35,9 +35,9 @@ func @const_fold_expand() -> tensor<1xi32> {
// CHECK-LABEL: func @const_fold_nontrivial // CHECK-LABEL: func @const_fold_nontrivial
func @const_fold_nontrivial() -> tensor<16xi64> { func @const_fold_nontrivial() -> tensor<16xi64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<16xi64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<16xi64>
%cst = xla_hlo.constant dense<42> : tensor<4x4xi64> %cst = mhlo.constant dense<42> : tensor<4x4xi64>
%0 = "xla_hlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64> %0 = "mhlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<16xi64> return %0 : tensor<16xi64>
} }
@ -46,9 +46,9 @@ func @const_fold_nontrivial() -> tensor<16xi64> {
// CHECK-LABEL: func @const_fold_flatten // CHECK-LABEL: func @const_fold_flatten
func @const_fold_flatten() -> tensor<16xi64> { func @const_fold_flatten() -> tensor<16xi64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<42> : tensor<16xi64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<42> : tensor<16xi64>
%cst = xla_hlo.constant dense<42> : tensor<4x4xi64> %cst = mhlo.constant dense<42> : tensor<4x4xi64>
%0 = "xla_hlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64> %0 = "mhlo.reshape"(%cst) : (tensor<4x4xi64>) -> tensor<16xi64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<16xi64> return %0 : tensor<16xi64>
} }
@ -57,9 +57,9 @@ func @const_fold_flatten() -> tensor<16xi64> {
// CHECK-LABEL: func @const_fold_6 // CHECK-LABEL: func @const_fold_6
func @const_fold_6() -> tensor<6xi32> { func @const_fold_6() -> tensor<6xi32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi32> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi32>
%cst = xla_hlo.constant dense<[[1, 2], [3, 4], [5, 6]]> : tensor<3x2xi32> %cst = mhlo.constant dense<[[1, 2], [3, 4], [5, 6]]> : tensor<3x2xi32>
%0 = "xla_hlo.reshape"(%cst) : (tensor<3x2xi32>) -> tensor<6xi32> %0 = "mhlo.reshape"(%cst) : (tensor<3x2xi32>) -> tensor<6xi32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<6xi32> return %0 : tensor<6xi32>
} }
@ -68,11 +68,11 @@ func @const_fold_6() -> tensor<6xi32> {
// CHECK-LABEL: func @const_fold_same_shape // CHECK-LABEL: func @const_fold_same_shape
func @const_fold_same_shape() -> tensor<2x3xi32> { func @const_fold_same_shape() -> tensor<2x3xi32> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<[ // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<[
// CHECK-SAME: [1, 2, 3], [4, 5, 6] // CHECK-SAME: [1, 2, 3], [4, 5, 6]
// CHECK-SAME: ]> : tensor<2x3xi32> // CHECK-SAME: ]> : tensor<2x3xi32>
%cst = xla_hlo.constant dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi32> %cst = mhlo.constant dense<[1, 2, 3, 4, 5, 6]> : tensor<6xi32>
%0 = "xla_hlo.reshape"(%cst) : (tensor<6xi32>) -> tensor<2x3xi32> %0 = "mhlo.reshape"(%cst) : (tensor<6xi32>) -> tensor<2x3xi32>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<2x3xi32> return %0 : tensor<2x3xi32>
} }
@ -81,9 +81,9 @@ func @const_fold_same_shape() -> tensor<2x3xi32> {
// CHECK-LABEL: func @const_fold_float // CHECK-LABEL: func @const_fold_float
func @const_fold_float() -> tensor<16xf64> { func @const_fold_float() -> tensor<16xf64> {
// CHECK-NEXT: [[CST:%.+]] = xla_hlo.constant dense<4.2{{0*}}e+00> : tensor<16xf64> // CHECK-NEXT: [[CST:%.+]] = mhlo.constant dense<4.2{{0*}}e+00> : tensor<16xf64>
%cst = xla_hlo.constant dense<4.2> : tensor<4x4xf64> %cst = mhlo.constant dense<4.2> : tensor<4x4xf64>
%0 = "xla_hlo.reshape"(%cst) : (tensor<4x4xf64>) -> tensor<16xf64> %0 = "mhlo.reshape"(%cst) : (tensor<4x4xf64>) -> tensor<16xf64>
// CHECK-NEXT: return [[CST]] // CHECK-NEXT: return [[CST]]
return %0 : tensor<16xf64> return %0 : tensor<16xf64>
} }
@ -94,7 +94,7 @@ func @const_fold_float() -> tensor<16xf64> {
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @non_const_same_shape(%arg : tensor<2x3xi32>) -> tensor<2x3xi32> { func @non_const_same_shape(%arg : tensor<2x3xi32>) -> tensor<2x3xi32> {
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
%0 = "xla_hlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<2x3xi32> %0 = "mhlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<2x3xi32>
return %0 : tensor<2x3xi32> return %0 : tensor<2x3xi32>
} }
@ -103,10 +103,10 @@ func @non_const_same_shape(%arg : tensor<2x3xi32>) -> tensor<2x3xi32> {
// CHECK-LABEL: func @non_const_chained_reshape // CHECK-LABEL: func @non_const_chained_reshape
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @non_const_chained_reshape(%arg : tensor<2x3xi32>) -> (tensor<3x2xi32>, tensor<6xi32>) { func @non_const_chained_reshape(%arg : tensor<2x3xi32>) -> (tensor<3x2xi32>, tensor<6xi32>) {
// CHECK-NEXT: "xla_hlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<3x2xi32> // CHECK-NEXT: "mhlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<3x2xi32>
// CHECK-NEXT: "xla_hlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<6xi32> // CHECK-NEXT: "mhlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<6xi32>
%0 = "xla_hlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32> %0 = "mhlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32>
%1 = "xla_hlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<6xi32> %1 = "mhlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<6xi32>
return %0, %1 : tensor<3x2xi32>, tensor<6xi32> // return both so nothing is removed return %0, %1 : tensor<3x2xi32>, tensor<6xi32> // return both so nothing is removed
} }
@ -115,9 +115,9 @@ func @non_const_chained_reshape(%arg : tensor<2x3xi32>) -> (tensor<3x2xi32>, ten
// CHECK-LABEL: func @non_const_chained_reshape_unused_parent // CHECK-LABEL: func @non_const_chained_reshape_unused_parent
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @non_const_chained_reshape_unused_parent(%arg : tensor<2x3xi32>) -> tensor<6xi32> { func @non_const_chained_reshape_unused_parent(%arg : tensor<2x3xi32>) -> tensor<6xi32> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<6xi32> // CHECK-NEXT: [[RES:%.+]] = "mhlo.reshape"([[ARG]]) : (tensor<2x3xi32>) -> tensor<6xi32>
%0 = "xla_hlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32> %0 = "mhlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32>
%1 = "xla_hlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<6xi32> %1 = "mhlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<6xi32>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %1 : tensor<6xi32> return %1 : tensor<6xi32>
} }
@ -127,8 +127,8 @@ func @non_const_chained_reshape_unused_parent(%arg : tensor<2x3xi32>) -> tensor<
// CHECK-LABEL: func @non_const_chained_reshape_becomes_noop // CHECK-LABEL: func @non_const_chained_reshape_becomes_noop
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @non_const_chained_reshape_becomes_noop(%arg : tensor<2x3xi32>) -> tensor<2x3xi32> { func @non_const_chained_reshape_becomes_noop(%arg : tensor<2x3xi32>) -> tensor<2x3xi32> {
%0 = "xla_hlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32> %0 = "mhlo.reshape"(%arg) : (tensor<2x3xi32>) -> tensor<3x2xi32>
%1 = "xla_hlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<2x3xi32> %1 = "mhlo.reshape"(%0) : (tensor<3x2xi32>) -> tensor<2x3xi32>
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
return %1 : tensor<2x3xi32> return %1 : tensor<2x3xi32>
} }
@ -138,12 +138,12 @@ func @non_const_chained_reshape_becomes_noop(%arg : tensor<2x3xi32>) -> tensor<2
// CHECK-LABEL: func @non_const_many_chained_reshapes // CHECK-LABEL: func @non_const_many_chained_reshapes
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @non_const_many_chained_reshapes(%arg : tensor<2x3x4xi32>) -> tensor<1x2x4x3xi32> { func @non_const_many_chained_reshapes(%arg : tensor<2x3x4xi32>) -> tensor<1x2x4x3xi32> {
// CHECK-NEXT: [[RES:%.+]] = "xla_hlo.reshape"([[ARG]]) : (tensor<2x3x4xi32>) -> tensor<1x2x4x3xi32> // CHECK-NEXT: [[RES:%.+]] = "mhlo.reshape"([[ARG]]) : (tensor<2x3x4xi32>) -> tensor<1x2x4x3xi32>
%0 = "xla_hlo.reshape"(%arg) : (tensor<2x3x4xi32>) -> tensor<4x3x2xi32> %0 = "mhlo.reshape"(%arg) : (tensor<2x3x4xi32>) -> tensor<4x3x2xi32>
%1 = "xla_hlo.reshape"(%0) : (tensor<4x3x2xi32>) -> tensor<12x2xi32> %1 = "mhlo.reshape"(%0) : (tensor<4x3x2xi32>) -> tensor<12x2xi32>
%2 = "xla_hlo.reshape"(%1) : (tensor<12x2xi32>) -> tensor<2x12xi32> %2 = "mhlo.reshape"(%1) : (tensor<12x2xi32>) -> tensor<2x12xi32>
%3 = "xla_hlo.reshape"(%2) : (tensor<2x12xi32>) -> tensor<24xi32> %3 = "mhlo.reshape"(%2) : (tensor<2x12xi32>) -> tensor<24xi32>
%4 = "xla_hlo.reshape"(%3) : (tensor<24xi32>) -> tensor<1x2x4x3xi32> %4 = "mhlo.reshape"(%3) : (tensor<24xi32>) -> tensor<1x2x4x3xi32>
// CHECK-NEXT: return [[RES]] // CHECK-NEXT: return [[RES]]
return %4 : tensor<1x2x4x3xi32> return %4 : tensor<1x2x4x3xi32>
} }

View File

@ -3,7 +3,7 @@
// CHECK-LABEL: func @noop // CHECK-LABEL: func @noop
// CHECK-SAME: (%[[ARG0:.*]]: tensor<1x2xf32>) // CHECK-SAME: (%[[ARG0:.*]]: tensor<1x2xf32>)
func @noop(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> { func @noop(%arg0: tensor<1x2xf32>) -> tensor<1x2xf32> {
%0 = "xla_hlo.reverse"(%arg0) {dimensions = dense<[]> : tensor<0xi64>} : (tensor<1x2xf32>) -> tensor<1x2xf32> %0 = "mhlo.reverse"(%arg0) {dimensions = dense<[]> : tensor<0xi64>} : (tensor<1x2xf32>) -> tensor<1x2xf32>
// CHECK: return %[[ARG0]] // CHECK: return %[[ARG0]]
return %0 : tensor<1x2xf32> return %0 : tensor<1x2xf32>
} }

View File

@ -4,27 +4,27 @@
// CHECK-LABEL: func @sink_const_to_while // CHECK-LABEL: func @sink_const_to_while
func @sink_const_to_while(%arg0: tensor<i64>) -> tensor<i64> { func @sink_const_to_while(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK-NEXT: xla_hlo.while // CHECK-NEXT: mhlo.while
%c0 = xla_hlo.constant dense<1> : tensor<i64> %c0 = mhlo.constant dense<1> : tensor<i64>
%c1 = xla_hlo.constant dense<2> : tensor<i64> %c1 = mhlo.constant dense<2> : tensor<i64>
%0 = "xla_hlo.while"(%arg0) ( { %0 = "mhlo.while"(%arg0) ( {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
// CHECK: %[[ARG1A:.+]]: tensor<i64> // CHECK: %[[ARG1A:.+]]: tensor<i64>
// CHECK: %[[C0:.+]] = xla_hlo.constant dense<1> : tensor<i64> // CHECK: %[[C0:.+]] = mhlo.constant dense<1> : tensor<i64>
// CHECK: "xla_hlo.compare"(%[[C0]], %[[ARG1A]]) // CHECK: "mhlo.compare"(%[[C0]], %[[ARG1A]])
%1 = "xla_hlo.compare"(%c0, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %1 = "mhlo.compare"(%c0, %arg1) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
"xla_hlo.return"(%1) : (tensor<i1>) -> () "mhlo.return"(%1) : (tensor<i1>) -> ()
}, { }, {
^bb0(%arg1: tensor<i64>): ^bb0(%arg1: tensor<i64>):
// CHECK: %[[ARG1B:.+]]: tensor<i64> // CHECK: %[[ARG1B:.+]]: tensor<i64>
// CHECK-DAG: %[[C1:.+]] = xla_hlo.constant dense<2> : tensor<i64> // CHECK-DAG: %[[C1:.+]] = mhlo.constant dense<2> : tensor<i64>
// CHECK-DAG: %[[ADD0:.+]] = xla_hlo.add %[[ARG1B]], %[[ARG1B]] // CHECK-DAG: %[[ADD0:.+]] = mhlo.add %[[ARG1B]], %[[ARG1B]]
%2 = xla_hlo.add %arg1, %arg1 : tensor<i64> %2 = mhlo.add %arg1, %arg1 : tensor<i64>
// CHECK: %[[ADD1:.+]] = xla_hlo.add %[[C1]], %[[ADD0]] // CHECK: %[[ADD1:.+]] = mhlo.add %[[C1]], %[[ADD0]]
%3 = xla_hlo.add %c1, %2 : tensor<i64> %3 = mhlo.add %c1, %2 : tensor<i64>
// CHECK: %[[ADD2:.+]] = xla_hlo.add %[[C1]], %[[ADD1]] // CHECK: %[[ADD2:.+]] = mhlo.add %[[C1]], %[[ADD1]]
%4 = xla_hlo.add %c1, %3 : tensor<i64> %4 = mhlo.add %c1, %3 : tensor<i64>
"xla_hlo.return"(%4) : (tensor<i64>) -> () "mhlo.return"(%4) : (tensor<i64>) -> ()
}) : (tensor<i64>) -> tensor<i64> }) : (tensor<i64>) -> tensor<i64>
return %0 : tensor<i64> return %0 : tensor<i64>
} }
@ -33,28 +33,28 @@ func @sink_const_to_while(%arg0: tensor<i64>) -> tensor<i64> {
// CHECK-LABEL: func @sink_const_to_conditional // CHECK-LABEL: func @sink_const_to_conditional
func @sink_const_to_conditional(%arg0: tensor<i64>) -> tensor<i64> { func @sink_const_to_conditional(%arg0: tensor<i64>) -> tensor<i64> {
%c0 = xla_hlo.constant dense<1> : tensor<i64> %c0 = mhlo.constant dense<1> : tensor<i64>
%c1 = xla_hlo.constant dense<2> : tensor<i64> %c1 = mhlo.constant dense<2> : tensor<i64>
%0 = "xla_hlo.compare"(%arg0, %c0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1> %0 = "mhlo.compare"(%arg0, %c0) {comparison_direction = "LT"} : (tensor<i64>, tensor<i64>) -> tensor<i1>
%1 = "xla_hlo.tuple"(%arg0) : (tensor<i64>) -> tuple<tensor<i64>> %1 = "mhlo.tuple"(%arg0) : (tensor<i64>) -> tuple<tensor<i64>>
// CHECK: xla_hlo.if // CHECK: mhlo.if
%2 = "xla_hlo.if"(%0, %1, %1) ( { %2 = "mhlo.if"(%0, %1, %1) ( {
^bb0(%arg1: tuple<tensor<i64>>): ^bb0(%arg1: tuple<tensor<i64>>):
// CHECK: %[[C0:.+]] = xla_hlo.constant dense<1> : tensor<i64> // CHECK: %[[C0:.+]] = mhlo.constant dense<1> : tensor<i64>
%3 = "xla_hlo.get_tuple_element"(%arg1) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64> %3 = "mhlo.get_tuple_element"(%arg1) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64>
// CHECK: %[[ADD0:.+]] = xla_hlo.add %[[C0]], // CHECK: %[[ADD0:.+]] = mhlo.add %[[C0]],
%4 = xla_hlo.add %c0, %3 : tensor<i64> %4 = mhlo.add %c0, %3 : tensor<i64>
%5 = "xla_hlo.tuple"(%4) : (tensor<i64>) -> tuple<tensor<i64>> %5 = "mhlo.tuple"(%4) : (tensor<i64>) -> tuple<tensor<i64>>
"xla_hlo.return"(%5) : (tuple<tensor<i64>>) -> () "mhlo.return"(%5) : (tuple<tensor<i64>>) -> ()
}, { }, {
^bb0(%arg1: tuple<tensor<i64>>): ^bb0(%arg1: tuple<tensor<i64>>):
// CHECK: %[[C1:.+]] = xla_hlo.constant dense<2> : tensor<i64> // CHECK: %[[C1:.+]] = mhlo.constant dense<2> : tensor<i64>
%6 = "xla_hlo.get_tuple_element"(%arg1) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64> %6 = "mhlo.get_tuple_element"(%arg1) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64>
// CHECK: %[[ADD1:.+]] = xla_hlo.add %[[C1]], // CHECK: %[[ADD1:.+]] = mhlo.add %[[C1]],
%7 = xla_hlo.add %c1, %6 : tensor<i64> %7 = mhlo.add %c1, %6 : tensor<i64>
%8 = "xla_hlo.tuple"(%7) : (tensor<i64>) -> tuple<tensor<i64>> %8 = "mhlo.tuple"(%7) : (tensor<i64>) -> tuple<tensor<i64>>
"xla_hlo.return"(%8) : (tuple<tensor<i64>>) -> () "mhlo.return"(%8) : (tuple<tensor<i64>>) -> ()
}) : (tensor<i1>, tuple<tensor<i64>>, tuple<tensor<i64>>) -> tuple<tensor<i64>> }) : (tensor<i1>, tuple<tensor<i64>>, tuple<tensor<i64>>) -> tuple<tensor<i64>>
%9 = "xla_hlo.get_tuple_element"(%2) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64> %9 = "mhlo.get_tuple_element"(%2) {index = 0 : i32} : (tuple<tensor<i64>>) -> tensor<i64>
return %9 : tensor<i64> return %9 : tensor<i64>
} }

View File

@ -3,7 +3,7 @@
// CHECK-LABEL: func @remove_noop // CHECK-LABEL: func @remove_noop
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @remove_noop(%arg : tensor<2x3x9x5xi32>) -> tensor<2x3x9x5xi32> { func @remove_noop(%arg : tensor<2x3x9x5xi32>) -> tensor<2x3x9x5xi32> {
%0 = "xla_hlo.transpose"(%arg) {permutation = dense<[0, 1, 2, 3]> : tensor<4xi64>}: (tensor<2x3x9x5xi32>) -> tensor<2x3x9x5xi32> %0 = "mhlo.transpose"(%arg) {permutation = dense<[0, 1, 2, 3]> : tensor<4xi64>}: (tensor<2x3x9x5xi32>) -> tensor<2x3x9x5xi32>
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
return %0 : tensor<2x3x9x5xi32> return %0 : tensor<2x3x9x5xi32>
} }
@ -13,8 +13,8 @@ func @remove_noop(%arg : tensor<2x3x9x5xi32>) -> tensor<2x3x9x5xi32> {
// CHECK-LABEL: func @keep_real_transpose // CHECK-LABEL: func @keep_real_transpose
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @keep_real_transpose(%arg : tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> { func @keep_real_transpose(%arg : tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> {
// CHECK-NEXT: "xla_hlo.transpose"([[ARG]]) // CHECK-NEXT: "mhlo.transpose"([[ARG]])
%0 = "xla_hlo.transpose"(%arg) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>}: (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> %0 = "mhlo.transpose"(%arg) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>}: (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32>
return %0 : tensor<3x2x5x9xi32> return %0 : tensor<3x2x5x9xi32>
} }
@ -23,7 +23,7 @@ func @keep_real_transpose(%arg : tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> {
// CHECK-LABEL: func @keep_same_shape_real_transpose // CHECK-LABEL: func @keep_same_shape_real_transpose
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @keep_same_shape_real_transpose(%arg : tensor<4x4xi32>) -> tensor<4x4xi32> { func @keep_same_shape_real_transpose(%arg : tensor<4x4xi32>) -> tensor<4x4xi32> {
// CHECK-NEXT: "xla_hlo.transpose"([[ARG]]) // CHECK-NEXT: "mhlo.transpose"([[ARG]])
%0 = "xla_hlo.transpose"(%arg) {permutation = dense<[1, 0]> : tensor<2xi64>}: (tensor<4x4xi32>) -> tensor<4x4xi32> %0 = "mhlo.transpose"(%arg) {permutation = dense<[1, 0]> : tensor<2xi64>}: (tensor<4x4xi32>) -> tensor<4x4xi32>
return %0 : tensor<4x4xi32> return %0 : tensor<4x4xi32>
} }

View File

@ -4,7 +4,7 @@
// CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]]
func @fold_access(%arg : tensor<i32>) -> tensor<i32> { func @fold_access(%arg : tensor<i32>) -> tensor<i32> {
// CHECK-NEXT: return [[ARG]] // CHECK-NEXT: return [[ARG]]
%tuple = "xla_hlo.tuple"(%arg) : (tensor<i32>) -> tuple<tensor<i32>> %tuple = "mhlo.tuple"(%arg) : (tensor<i32>) -> tuple<tensor<i32>>
%element = "xla_hlo.get_tuple_element"(%tuple) {index = 0 : i32} : (tuple<tensor<i32>>) -> tensor<i32> %element = "mhlo.get_tuple_element"(%tuple) {index = 0 : i32} : (tuple<tensor<i32>>) -> tensor<i32>
return %element : tensor<i32> return %element : tensor<i32>
} }

View File

@ -10,19 +10,19 @@ func @batchNormInference_2D_inner_features(
%x: tensor<4x256xf32>, %scale: tensor<256xf32>, %offset: tensor<256xf32>, %x: tensor<4x256xf32>, %scale: tensor<256xf32>, %offset: tensor<256xf32>,
%mean: tensor<256xf32>, %variance: tensor<256xf32>) %mean: tensor<256xf32>, %variance: tensor<256xf32>)
-> (tensor<4x256xf32>) { -> (tensor<4x256xf32>) {
// CHECK-DAG: %[[EPS:.+]] = xla_hlo.constant dense<1.001000e-05> : tensor<f32> // CHECK-DAG: %[[EPS:.+]] = mhlo.constant dense<1.001000e-05> : tensor<f32>
// CHECK-DAG: %[[EPS_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[EPS]]) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<f32>) -> tensor<256xf32> // CHECK-DAG: %[[EPS_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[EPS]]) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<f32>) -> tensor<256xf32>
// CHECK-DAG: %[[VARIANCE_EPS:.+]] = xla_hlo.add %[[VARIANCE]], %[[EPS_BCAST]] : tensor<256xf32> // CHECK-DAG: %[[VARIANCE_EPS:.+]] = mhlo.add %[[VARIANCE]], %[[EPS_BCAST]] : tensor<256xf32>
// CHECK-DAG: %[[STDDEV:.+]] = "xla_hlo.sqrt"(%[[VARIANCE_EPS]]) : (tensor<256xf32>) -> tensor<256xf32> // CHECK-DAG: %[[STDDEV:.+]] = "mhlo.sqrt"(%[[VARIANCE_EPS]]) : (tensor<256xf32>) -> tensor<256xf32>
// CHECK-DAG: %[[STDDEV_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[STDDEV]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32> // CHECK-DAG: %[[STDDEV_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[STDDEV]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32>
// CHECK-DAG: %[[SCALE_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[SCALE]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32> // CHECK-DAG: %[[SCALE_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[SCALE]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32>
// CHECK-DAG: %[[OFFSET_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[OFFSET]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32> // CHECK-DAG: %[[OFFSET_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[OFFSET]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32>
// CHECK-DAG: %[[MEAN_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[MEAN]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32> // CHECK-DAG: %[[MEAN_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[MEAN]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<4x256xf32>
// CHECK-DAG: %[[X_CENTER:.+]] = xla_hlo.subtract %[[X]], %[[MEAN_BCAST]] : tensor<4x256xf32> // CHECK-DAG: %[[X_CENTER:.+]] = mhlo.subtract %[[X]], %[[MEAN_BCAST]] : tensor<4x256xf32>
// CHECK-DAG: %[[X_SCALED:.+]] = xla_hlo.multiply %[[X_CENTER]], %[[SCALE_BCAST]] : tensor<4x256xf32> // CHECK-DAG: %[[X_SCALED:.+]] = mhlo.multiply %[[X_CENTER]], %[[SCALE_BCAST]] : tensor<4x256xf32>
// CHECK-DAG: %[[X_NORMED:.+]] = xla_hlo.divide %[[X_SCALED]], %[[STDDEV_BCAST]] : tensor<4x256xf32> // CHECK-DAG: %[[X_NORMED:.+]] = mhlo.divide %[[X_SCALED]], %[[STDDEV_BCAST]] : tensor<4x256xf32>
// CHECK-DAG: %[[RESULT:.+]] = xla_hlo.add %[[X_NORMED]], %[[OFFSET_BCAST]] : tensor<4x256xf32> // CHECK-DAG: %[[RESULT:.+]] = mhlo.add %[[X_NORMED]], %[[OFFSET_BCAST]] : tensor<4x256xf32>
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 1.001000e-05 : f32, feature_index = 1 : i64} : {epsilon = 1.001000e-05 : f32, feature_index = 1 : i64} :
(tensor<4x256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, (tensor<4x256xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>,
tensor<256xf32>) -> tensor<4x256xf32> tensor<256xf32>) -> tensor<4x256xf32>
@ -36,12 +36,12 @@ func @batchNormInference_2D_inner_features(
// the verifier to enforce the rest. // the verifier to enforce the rest.
// CHECK-SAME: %[[X:[^:]+]] // CHECK-SAME: %[[X:[^:]+]]
// CHECK-SAME: %[[SCALE:[^:]+]] // CHECK-SAME: %[[SCALE:[^:]+]]
// CHECK-DAG: %[[SCALE_BCAST:.+]] = "xla_hlo.broadcast_in_dim"(%[[SCALE]]) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<3x4x256x6xf32> // CHECK-DAG: %[[SCALE_BCAST:.+]] = "mhlo.broadcast_in_dim"(%[[SCALE]]) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<256xf32>) -> tensor<3x4x256x6xf32>
func @batchNormInference_4D_middle_features( func @batchNormInference_4D_middle_features(
%x: tensor<3x4x256x6xf32>, %scale: tensor<256xf32>, %offset: tensor<256xf32>, %x: tensor<3x4x256x6xf32>, %scale: tensor<256xf32>, %offset: tensor<256xf32>,
%mean: tensor<256xf32>, %variance: tensor<256xf32>) %mean: tensor<256xf32>, %variance: tensor<256xf32>)
-> (tensor<3x4x256x6xf32>) { -> (tensor<3x4x256x6xf32>) {
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 1.001000e-05 : f32, feature_index = 2 : i64} : {epsilon = 1.001000e-05 : f32, feature_index = 2 : i64} :
(tensor<3x4x256x6xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>, (tensor<3x4x256x6xf32>, tensor<256xf32>, tensor<256xf32>, tensor<256xf32>,
tensor<256xf32>) -> tensor<3x4x256x6xf32> tensor<256xf32>) -> tensor<3x4x256x6xf32>
@ -51,12 +51,12 @@ func @batchNormInference_4D_middle_features(
// ----- // -----
// CHECK-LABEL: @batchNormInference_f64 // CHECK-LABEL: @batchNormInference_f64
// Validate that epsilon is properly promoted to f64 // Validate that epsilon is properly promoted to f64
// CHECK-DAG: %[[EPS:.+]] = xla_hlo.constant dense<1.000000e+00> : tensor<f64> // CHECK-DAG: %[[EPS:.+]] = mhlo.constant dense<1.000000e+00> : tensor<f64>
func @batchNormInference_f64( func @batchNormInference_f64(
%x: tensor<4x256xf64>, %scale: tensor<256xf64>, %offset: tensor<256xf64>, %x: tensor<4x256xf64>, %scale: tensor<256xf64>, %offset: tensor<256xf64>,
%mean: tensor<256xf64>, %variance: tensor<256xf64>) %mean: tensor<256xf64>, %variance: tensor<256xf64>)
-> (tensor<4x256xf64>) { -> (tensor<4x256xf64>) {
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 1.0 : f32, feature_index = 1 : i64} : {epsilon = 1.0 : f32, feature_index = 1 : i64} :
(tensor<4x256xf64>, tensor<256xf64>, tensor<256xf64>, tensor<256xf64>, (tensor<4x256xf64>, tensor<256xf64>, tensor<256xf64>, tensor<256xf64>,
tensor<256xf64>) -> tensor<4x256xf64> tensor<256xf64>) -> tensor<4x256xf64>
@ -66,12 +66,12 @@ func @batchNormInference_f64(
// ----- // -----
// CHECK-LABEL: @batchNormInference_f16 // CHECK-LABEL: @batchNormInference_f16
// Validate that epsilon is properly promoted to f64 // Validate that epsilon is properly promoted to f64
// CHECK-DAG: %[[EPS:.+]] = xla_hlo.constant dense<1.000000e+00> : tensor<f16> // CHECK-DAG: %[[EPS:.+]] = mhlo.constant dense<1.000000e+00> : tensor<f16>
func @batchNormInference_f16( func @batchNormInference_f16(
%x: tensor<4x256xf16>, %scale: tensor<256xf16>, %offset: tensor<256xf16>, %x: tensor<4x256xf16>, %scale: tensor<256xf16>, %offset: tensor<256xf16>,
%mean: tensor<256xf16>, %variance: tensor<256xf16>) %mean: tensor<256xf16>, %variance: tensor<256xf16>)
-> (tensor<4x256xf16>) { -> (tensor<4x256xf16>) {
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 1.0 : f32, feature_index = 1 : i64} : {epsilon = 1.0 : f32, feature_index = 1 : i64} :
(tensor<4x256xf16>, tensor<256xf16>, tensor<256xf16>, tensor<256xf16>, (tensor<4x256xf16>, tensor<256xf16>, tensor<256xf16>, tensor<256xf16>,
tensor<256xf16>) -> tensor<4x256xf16> tensor<256xf16>) -> tensor<4x256xf16>
@ -85,7 +85,7 @@ func @batchNormInference_f16_overflow(
%mean: tensor<256xf16>, %variance: tensor<256xf16>) %mean: tensor<256xf16>, %variance: tensor<256xf16>)
-> (tensor<4x256xf16>) { -> (tensor<4x256xf16>) {
// expected-warning @+1 {{Could not convert batch_norm epsilon to target fp type: opStatus = 24}} // expected-warning @+1 {{Could not convert batch_norm epsilon to target fp type: opStatus = 24}}
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 0.00000001 : f32, feature_index = 1 : i64} : {epsilon = 0.00000001 : f32, feature_index = 1 : i64} :
(tensor<4x256xf16>, tensor<256xf16>, tensor<256xf16>, tensor<256xf16>, (tensor<4x256xf16>, tensor<256xf16>, tensor<256xf16>, tensor<256xf16>,
tensor<256xf16>) -> tensor<4x256xf16> tensor<256xf16>) -> tensor<4x256xf16>
@ -108,26 +108,26 @@ func @batchNormInference_dynamic_shape(
// CHECK-DAG: %[[C1:.*]] = constant 1 : index // CHECK-DAG: %[[C1:.*]] = constant 1 : index
// CHECK-DAG: %[[C2:.*]] = constant 2 : index // CHECK-DAG: %[[C2:.*]] = constant 2 : index
// CHECK-DAG: %[[C3:.*]] = constant 3 : index // CHECK-DAG: %[[C3:.*]] = constant 3 : index
// CHECK-DAG: %[[EPS:.+]] = xla_hlo.constant dense<1.000000e-03> : tensor<f32> // CHECK-DAG: %[[EPS:.+]] = mhlo.constant dense<1.000000e-03> : tensor<f32>
// CHECK-DAG: %[[DIM:.+]] = dim %[[VARIANCE]], %[[C0]] : tensor<?xf32> // CHECK-DAG: %[[DIM:.+]] = dim %[[VARIANCE]], %[[C0]] : tensor<?xf32>
// CHECK-DAG: %[[TO_DIM_TENSOR:.+]] = tensor_from_elements(%[[DIM]]) : tensor<1xindex> // CHECK-DAG: %[[TO_DIM_TENSOR:.+]] = tensor_from_elements(%[[DIM]]) : tensor<1xindex>
// CHECK-DAG: %[[EPS_BCAST:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[EPS]], %[[TO_DIM_TENSOR]]) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<f32>, tensor<1xindex>) -> tensor<?xf32> // CHECK-DAG: %[[EPS_BCAST:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[EPS]], %[[TO_DIM_TENSOR]]) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor<f32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK-DAG: %[[VARIANCE_EPS:.+]] = xla_hlo.add %[[VARIANCE]], %[[EPS_BCAST]] : tensor<?xf32> // CHECK-DAG: %[[VARIANCE_EPS:.+]] = mhlo.add %[[VARIANCE]], %[[EPS_BCAST]] : tensor<?xf32>
// CHECK-DAG: %[[STDDEV:.+]] = "xla_hlo.sqrt"(%[[VARIANCE_EPS]]) : (tensor<?xf32>) -> tensor<?xf32> // CHECK-DAG: %[[STDDEV:.+]] = "mhlo.sqrt"(%[[VARIANCE_EPS]]) : (tensor<?xf32>) -> tensor<?xf32>
// CHECK-DAG: %[[INPUT_DIM_0:.+]] = dim %[[X]], %[[C0]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[INPUT_DIM_0:.+]] = dim %[[X]], %[[C0]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[INPUT_DIM_1:.+]] = dim %[[X]], %[[C1]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[INPUT_DIM_1:.+]] = dim %[[X]], %[[C1]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[INPUT_DIM_2:.+]] = dim %[[X]], %[[C2]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[INPUT_DIM_2:.+]] = dim %[[X]], %[[C2]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[INPUT_DIM_3:.+]] = dim %[[X]], %[[C3]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[INPUT_DIM_3:.+]] = dim %[[X]], %[[C3]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[TO_INPUT_DIM_TENSOR:.+]] = tensor_from_elements(%[[INPUT_DIM_0]], %[[INPUT_DIM_1]], %[[INPUT_DIM_2]], %[[INPUT_DIM_3]]) : tensor<4xindex> // CHECK-DAG: %[[TO_INPUT_DIM_TENSOR:.+]] = tensor_from_elements(%[[INPUT_DIM_0]], %[[INPUT_DIM_1]], %[[INPUT_DIM_2]], %[[INPUT_DIM_3]]) : tensor<4xindex>
// CHECK-DAG: %[[STDDEV_BCAST:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[STDDEV]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32> // CHECK-DAG: %[[STDDEV_BCAST:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[STDDEV]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-DAG: %[[SCALE_BCAST:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[SCALE]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32> // CHECK-DAG: %[[SCALE_BCAST:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[SCALE]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-DAG: %[[OFFSET_BCAST:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[OFFSET]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32> // CHECK-DAG: %[[OFFSET_BCAST:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[OFFSET]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-DAG: %[[MEAN_BCAST:.+]] = "xla_hlo.dynamic_broadcast_in_dim"(%[[MEAN]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32> // CHECK-DAG: %[[MEAN_BCAST:.+]] = "mhlo.dynamic_broadcast_in_dim"(%[[MEAN]], %[[TO_INPUT_DIM_TENSOR]]) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<?xf32>, tensor<4xindex>) -> tensor<?x?x?x?xf32>
// CHECK-DAG: %[[X_CENTER:.+]] = xla_hlo.subtract %[[X]], %[[MEAN_BCAST]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[X_CENTER:.+]] = mhlo.subtract %[[X]], %[[MEAN_BCAST]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[X_SCALED:.+]] = xla_hlo.multiply %[[X_CENTER]], %[[SCALE_BCAST]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[X_SCALED:.+]] = mhlo.multiply %[[X_CENTER]], %[[SCALE_BCAST]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[X_NORMED:.+]] = xla_hlo.divide %[[X_SCALED]], %[[STDDEV_BCAST]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[X_NORMED:.+]] = mhlo.divide %[[X_SCALED]], %[[STDDEV_BCAST]] : tensor<?x?x?x?xf32>
// CHECK-DAG: %[[RESULT:.+]] = xla_hlo.add %[[X_NORMED]], %[[OFFSET_BCAST]] : tensor<?x?x?x?xf32> // CHECK-DAG: %[[RESULT:.+]] = mhlo.add %[[X_NORMED]], %[[OFFSET_BCAST]] : tensor<?x?x?x?xf32>
%0 = "xla_hlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance) %0 = "mhlo.batch_norm_inference"(%x, %scale, %offset, %mean, %variance)
{epsilon = 0.001 : f32, feature_index = 1 : i64} : {epsilon = 0.001 : f32, feature_index = 1 : i64} :
(tensor<?x?x?x?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>, (tensor<?x?x?x?xf32>, tensor<?xf32>, tensor<?xf32>, tensor<?xf32>,
tensor<?xf32>) -> tensor<?x?x?x?xf32> tensor<?xf32>) -> tensor<?x?x?x?xf32>

View File

@ -2,14 +2,14 @@
// CHECK-LABEL: func @multi_outputs_same // CHECK-LABEL: func @multi_outputs_same
func @multi_outputs_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>) { func @multi_outputs_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = "xla_hlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %0 = "mhlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%1 = "xla_hlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %1 = "mhlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%2 = "xla_hlo.add"(%1, %1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %2 = "mhlo.add"(%1, %1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[RET:.*]]:2 = "xla_hlo.fusion" // CHECK: %[[RET:.*]]:2 = "mhlo.fusion"
// CHECK-NEXT: xla_hlo.add // CHECK-NEXT: mhlo.add
// CHECK-NEXT: xla_hlo.subtract // CHECK-NEXT: mhlo.subtract
// CHECK-NEXT: xla_hlo.add // CHECK-NEXT: mhlo.add
// CHECK-NEXT: xla_hlo.return // CHECK-NEXT: mhlo.return
return %1, %2 : tensor<?x?xf32>, tensor<?x?xf32> return %1, %2 : tensor<?x?xf32>, tensor<?x?xf32>
} }
@ -17,18 +17,18 @@ func @multi_outputs_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (ten
// CHECK-LABEL: func @multi_outputs_same_2 // CHECK-LABEL: func @multi_outputs_same_2
func @multi_outputs_same_2(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) { func @multi_outputs_same_2(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = "xla_hlo.abs"(%arg0) : (tensor<?x?xf32>) -> tensor<?x?xf32> %0 = "mhlo.abs"(%arg0) : (tensor<?x?xf32>) -> tensor<?x?xf32>
%1 = "xla_hlo.abs"(%arg1) : (tensor<?x?xf32>) -> tensor<?x?xf32> %1 = "mhlo.abs"(%arg1) : (tensor<?x?xf32>) -> tensor<?x?xf32>
%2 = "xla_hlo.add"(%0, %1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %2 = "mhlo.add"(%0, %1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%3 = "xla_hlo.abs"(%0) : (tensor<?x?xf32>) -> tensor<?x?xf32> %3 = "mhlo.abs"(%0) : (tensor<?x?xf32>) -> tensor<?x?xf32>
%4 = "xla_hlo.abs"(%1) : (tensor<?x?xf32>) -> tensor<?x?xf32> %4 = "mhlo.abs"(%1) : (tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[RET:.*]]:3 = "xla_hlo.fusion" // CHECK: %[[RET:.*]]:3 = "mhlo.fusion"
// CHECK-NEXT: xla_hlo.abs // CHECK-NEXT: mhlo.abs
// CHECK-NEXT: xla_hlo.abs // CHECK-NEXT: mhlo.abs
// CHECK-NEXT: xla_hlo.add // CHECK-NEXT: mhlo.add
// CHECK-NEXT: xla_hlo.abs // CHECK-NEXT: mhlo.abs
// CHECK-NEXT: xla_hlo.abs // CHECK-NEXT: mhlo.abs
// CHECK-NEXT: xla_hlo.return // CHECK-NEXT: mhlo.return
return %2, %3, %4 : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32> return %2, %3, %4 : tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>
} }
@ -36,9 +36,9 @@ func @multi_outputs_same_2(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (t
// CHECK-LABEL: func @multi_outputs_not_sure_same // CHECK-LABEL: func @multi_outputs_not_sure_same
func @multi_outputs_not_sure_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>) { func @multi_outputs_not_sure_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = "xla_hlo.add"(%arg0, %arg0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %0 = "mhlo.add"(%arg0, %arg0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK-NOT: xla_hlo.fusion // CHECK-NOT: mhlo.fusion
%1 = "xla_hlo.subtract"(%arg1, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %1 = "mhlo.subtract"(%arg1, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32> return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
} }
@ -46,25 +46,25 @@ func @multi_outputs_not_sure_same(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>
// CHECK-LABEL: func @reduce // CHECK-LABEL: func @reduce
func @reduce(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?xf32>) { func @reduce(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?xf32>) {
%0 = "xla_hlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %0 = "mhlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%1 = "xla_hlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %1 = "mhlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[RET0:.*]] = "xla_hlo.fusion" // CHECK: %[[RET0:.*]] = "mhlo.fusion"
// CHECK-NEXT: xla_hlo.add // CHECK-NEXT: mhlo.add
// CHECK-NEXT: xla_hlo.subtract // CHECK-NEXT: mhlo.subtract
// CHECK-NEXT: xla_hlo.return // CHECK-NEXT: mhlo.return
// Currently we do not support fuse arguments and ops without direct producer-consumer // Currently we do not support fuse arguments and ops without direct producer-consumer
// relationship. Thus Reduce Op should not be fused with above two ops. // relationship. Thus Reduce Op should not be fused with above two ops.
%2 = xla_hlo.constant dense<0.000000e+00> : tensor<f32> %2 = mhlo.constant dense<0.000000e+00> : tensor<f32>
%3 = "xla_hlo.reduce"(%arg0, %2) ( { %3 = "mhlo.reduce"(%arg0, %2) ( {
^bb0(%arg2: tensor<f32>, %arg3: tensor<f32>): ^bb0(%arg2: tensor<f32>, %arg3: tensor<f32>):
%4 = "xla_hlo.add"(%arg2, %arg3) : (tensor<f32>, tensor<f32>) -> tensor<f32> %4 = "mhlo.add"(%arg2, %arg3) : (tensor<f32>, tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%4) : (tensor<f32>) -> () "mhlo.return"(%4) : (tensor<f32>) -> ()
}) {dimensions = dense<[1]> : tensor<1xi64>} : (tensor<?x?xf32>, tensor<f32>) -> tensor<?xf32> }) {dimensions = dense<[1]> : tensor<1xi64>} : (tensor<?x?xf32>, tensor<f32>) -> tensor<?xf32>
%4 = "xla_hlo.add"(%3, %3) : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32> %4 = "mhlo.add"(%3, %3) : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
// Above two ops should not be fused since reduce op can not be // Above two ops should not be fused since reduce op can not be
// fused with its consumer. // fused with its consumer.
// CHECK-NOT: xla_hlo.fusion // CHECK-NOT: mhlo.fusion
return %1, %4 : tensor<?x?xf32>, tensor<?xf32> return %1, %4 : tensor<?x?xf32>, tensor<?xf32>
} }
@ -73,25 +73,25 @@ func @reduce(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>
// CHECK-LABEL: func @reduce_2 // CHECK-LABEL: func @reduce_2
func @reduce_2(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?xf32>) { func @reduce_2(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> (tensor<?x?xf32>, tensor<?xf32>) {
%0 = "xla_hlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %0 = "mhlo.add"(%arg0, %arg1) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%1 = "xla_hlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> %1 = "mhlo.subtract"(%arg0, %0) : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
%2 = xla_hlo.constant dense<0.000000e+00> : tensor<f32> %2 = mhlo.constant dense<0.000000e+00> : tensor<f32>
%3 = "xla_hlo.reduce"(%1, %2) ( { %3 = "mhlo.reduce"(%1, %2) ( {
^bb0(%arg2: tensor<f32>, %arg3: tensor<f32>): ^bb0(%arg2: tensor<f32>, %arg3: tensor<f32>):
%4 = "xla_hlo.add"(%arg2, %arg3) : (tensor<f32>, tensor<f32>) -> tensor<f32> %4 = "mhlo.add"(%arg2, %arg3) : (tensor<f32>, tensor<f32>) -> tensor<f32>
"xla_hlo.return"(%4) : (tensor<f32>) -> () "mhlo.return"(%4) : (tensor<f32>) -> ()
}) {dimensions = dense<[1]> : tensor<1xi64>} : (tensor<?x?xf32>, tensor<f32>) -> tensor<?xf32> }) {dimensions = dense<[1]> : tensor<1xi64>} : (tensor<?x?xf32>, tensor<f32>) -> tensor<?xf32>
// CHECK: %[[RET0:.*]]:2 = "xla_hlo.fusion" // CHECK: %[[RET0:.*]]:2 = "mhlo.fusion"
// CHECK-NEXT: xla_hlo.add // CHECK-NEXT: mhlo.add
// CHECK-NEXT: xla_hlo.subtract // CHECK-NEXT: mhlo.subtract
// CHECK-NEXT: xla_hlo.constant // CHECK-NEXT: mhlo.constant
// CHECK-NEXT: xla_hlo.reduce // CHECK-NEXT: mhlo.reduce
// CHECK: xla_hlo.return // CHECK: mhlo.return
// Following op should not be fused with the above ops since reduce op can not be // Following op should not be fused with the above ops since reduce op can not be
// fused with its consumer. // fused with its consumer.
// CHECK-NOT: xla_hlo.fusion // CHECK-NOT: mhlo.fusion
%4 = "xla_hlo.add"(%3, %3) : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32> %4 = "mhlo.add"(%3, %3) : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
return %1, %4 : tensor<?x?xf32>, tensor<?xf32> return %1, %4 : tensor<?x?xf32>, tensor<?xf32>
} }

View File

@ -9,15 +9,15 @@ func @sqr_transform_result(%a: tensor<*xf32>) -> tensor<*xf32> {
%num_elements = shape.num_elements %shape %num_elements = shape.num_elements %shape
%num_elements_as_index = shape.size_to_index %num_elements %num_elements_as_index = shape.size_to_index %num_elements
%flat_shape = tensor_from_elements(%num_elements_as_index) : tensor<1xindex> %flat_shape = tensor_from_elements(%num_elements_as_index) : tensor<1xindex>
%flat_a = "xla_hlo.dynamic_reshape"(%a, %flat_shape) %flat_a = "mhlo.dynamic_reshape"(%a, %flat_shape)
: (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32> : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// Apply operation. // Apply operation.
%flat_b = "xla_hlo.sqrt"(%flat_a) : (tensor<?xf32>) -> tensor<?xf32> %flat_b = "mhlo.sqrt"(%flat_a) : (tensor<?xf32>) -> tensor<?xf32>
// Restore original shape. // Restore original shape.
%shape_as_extent_tensor = shape.to_extent_tensor %shape : tensor<?xindex> %shape_as_extent_tensor = shape.to_extent_tensor %shape : tensor<?xindex>
%b = "xla_hlo.dynamic_reshape"(%flat_b, %shape_as_extent_tensor) %b = "mhlo.dynamic_reshape"(%flat_b, %shape_as_extent_tensor)
: (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32> : (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32>
return %b : tensor<*xf32> return %b : tensor<*xf32>
@ -33,12 +33,12 @@ func @sqrt(%a: tensor<*xf32>) -> tensor<*xf32> {
// CHECK-NEXT: %[[NUM_ELEMENTS:.*]] = shape.num_elements %[[SHAPE]] // CHECK-NEXT: %[[NUM_ELEMENTS:.*]] = shape.num_elements %[[SHAPE]]
// CHECK-NEXT: %[[NUM_ELEMENTS_AS_INDEX:.*]] = shape.size_to_index %[[NUM_ELEMENTS]] // CHECK-NEXT: %[[NUM_ELEMENTS_AS_INDEX:.*]] = shape.size_to_index %[[NUM_ELEMENTS]]
// CHECK-NEXT: %[[FLAT_SHAPE:.*]] = tensor_from_elements(%[[NUM_ELEMENTS_AS_INDEX]]) : tensor<1xindex> // CHECK-NEXT: %[[FLAT_SHAPE:.*]] = tensor_from_elements(%[[NUM_ELEMENTS_AS_INDEX]]) : tensor<1xindex>
// CHECK-NEXT: %[[FLAT_A:.*]] = "xla_hlo.dynamic_reshape"(%[[A]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32> // CHECK-NEXT: %[[FLAT_A:.*]] = "mhlo.dynamic_reshape"(%[[A]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK-NEXT: %[[FLAT_B:.*]] = "xla_hlo.sqrt"(%[[FLAT_A]]) : (tensor<?xf32>) -> tensor<?xf32> // CHECK-NEXT: %[[FLAT_B:.*]] = "mhlo.sqrt"(%[[FLAT_A]]) : (tensor<?xf32>) -> tensor<?xf32>
// CHECK-NEXT: %[[SHAPE_AS_EXTENT_TENSOR:.*]] = shape.to_extent_tensor %[[SHAPE]] : tensor<?xindex> // CHECK-NEXT: %[[SHAPE_AS_EXTENT_TENSOR:.*]] = shape.to_extent_tensor %[[SHAPE]] : tensor<?xindex>
// CHECK-NEXT: %[[B:.*]] = "xla_hlo.dynamic_reshape"(%[[FLAT_B]], %[[SHAPE_AS_EXTENT_TENSOR]]) : (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32> // CHECK-NEXT: %[[B:.*]] = "mhlo.dynamic_reshape"(%[[FLAT_B]], %[[SHAPE_AS_EXTENT_TENSOR]]) : (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32>
// CHECK-NEXT: return %[[B]] : tensor<*xf32> // CHECK-NEXT: return %[[B]] : tensor<*xf32>
%b = "xla_hlo.sqrt"(%a) : (tensor<*xf32>) -> tensor<*xf32> %b = "mhlo.sqrt"(%a) : (tensor<*xf32>) -> tensor<*xf32>
return %b : tensor<*xf32> return %b : tensor<*xf32>
} }
@ -48,9 +48,9 @@ func @sqrt(%a: tensor<*xf32>) -> tensor<*xf32> {
// CHECK-LABEL: @sqrt_ranked // CHECK-LABEL: @sqrt_ranked
// CHECK-SAME: (%[[A:.*]]: tensor<3x?xf32>) // CHECK-SAME: (%[[A:.*]]: tensor<3x?xf32>)
func @sqrt_ranked(%a: tensor<3x?xf32>) -> tensor<3x?xf32> { func @sqrt_ranked(%a: tensor<3x?xf32>) -> tensor<3x?xf32> {
// CHECK-NEXT: %[[B:.*]] = "xla_hlo.sqrt"(%[[A]]) : (tensor<3x?xf32>) -> tensor<3x?xf32> // CHECK-NEXT: %[[B:.*]] = "mhlo.sqrt"(%[[A]]) : (tensor<3x?xf32>) -> tensor<3x?xf32>
// CHECK-NEXT: return %[[B]] : tensor<3x?xf32> // CHECK-NEXT: return %[[B]] : tensor<3x?xf32>
%b = "xla_hlo.sqrt"(%a) : (tensor<3x?xf32>) -> tensor<3x?xf32> %b = "mhlo.sqrt"(%a) : (tensor<3x?xf32>) -> tensor<3x?xf32>
return %b : tensor<3x?xf32> return %b : tensor<3x?xf32>
} }
@ -60,9 +60,9 @@ func @sqrt_ranked(%a: tensor<3x?xf32>) -> tensor<3x?xf32> {
// CHECK-LABEL: @sqrt_static // CHECK-LABEL: @sqrt_static
// CHECK-SAME: (%[[A:.*]]: tensor<2x3xf32>) // CHECK-SAME: (%[[A:.*]]: tensor<2x3xf32>)
func @sqrt_static(%a: tensor<2x3xf32>) -> tensor<2x3xf32> { func @sqrt_static(%a: tensor<2x3xf32>) -> tensor<2x3xf32> {
// CHECK-NEXT: %[[B:.*]] = "xla_hlo.sqrt"(%[[A]]) : (tensor<2x3xf32>) -> tensor<2x3xf32> // CHECK-NEXT: %[[B:.*]] = "mhlo.sqrt"(%[[A]]) : (tensor<2x3xf32>) -> tensor<2x3xf32>
// CHECK-NEXT: return %[[B]] : tensor<2x3xf32> // CHECK-NEXT: return %[[B]] : tensor<2x3xf32>
%b = "xla_hlo.sqrt"(%a) : (tensor<2x3xf32>) -> tensor<2x3xf32> %b = "mhlo.sqrt"(%a) : (tensor<2x3xf32>) -> tensor<2x3xf32>
return %b : tensor<2x3xf32> return %b : tensor<2x3xf32>
} }
@ -77,12 +77,12 @@ func @add_unranked(%a : tensor<*xf32>, %b : tensor<*xf32>) -> tensor<*xf32> {
// CHECK: %[[NUM_ELEMENTS:.*]] = shape.num_elements %[[SHAPE]] // CHECK: %[[NUM_ELEMENTS:.*]] = shape.num_elements %[[SHAPE]]
// CHECK: %[[NUM_ELEMENTS_AS_INDEX:.*]] = shape.size_to_index %[[NUM_ELEMENTS]] // CHECK: %[[NUM_ELEMENTS_AS_INDEX:.*]] = shape.size_to_index %[[NUM_ELEMENTS]]
// CHECK: %[[FLAT_SHAPE:.*]] = tensor_from_elements(%[[NUM_ELEMENTS_AS_INDEX]]) : tensor<1xindex> // CHECK: %[[FLAT_SHAPE:.*]] = tensor_from_elements(%[[NUM_ELEMENTS_AS_INDEX]]) : tensor<1xindex>
// CHECK: %[[FLAT_A:.*]] = "xla_hlo.dynamic_reshape"(%[[A]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32> // CHECK: %[[FLAT_A:.*]] = "mhlo.dynamic_reshape"(%[[A]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK: %[[FLAT_B:.*]] = "xla_hlo.dynamic_reshape"(%[[B]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32> // CHECK: %[[FLAT_B:.*]] = "mhlo.dynamic_reshape"(%[[B]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor<?xf32>
// CHECK: %[[FLAT_RESULT:.*]] = xla_hlo.add %[[FLAT_A]], %[[FLAT_B]] : tensor<?xf32> // CHECK: %[[FLAT_RESULT:.*]] = mhlo.add %[[FLAT_A]], %[[FLAT_B]] : tensor<?xf32>
// CHECK: %[[SHAPE_AS_EXTENT_TENSOR:.*]] = shape.to_extent_tensor %[[SHAPE]] : tensor<?xindex> // CHECK: %[[SHAPE_AS_EXTENT_TENSOR:.*]] = shape.to_extent_tensor %[[SHAPE]] : tensor<?xindex>
// CHECK: %[[RESULT:.*]] = "xla_hlo.dynamic_reshape"(%[[FLAT_RESULT]], %[[SHAPE_AS_EXTENT_TENSOR]]) : (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32> // CHECK: %[[RESULT:.*]] = "mhlo.dynamic_reshape"(%[[FLAT_RESULT]], %[[SHAPE_AS_EXTENT_TENSOR]]) : (tensor<?xf32>, tensor<?xindex>) -> tensor<*xf32>
// CHECK: return %[[RESULT]] : tensor<*xf32> // CHECK: return %[[RESULT]] : tensor<*xf32>
%result = xla_hlo.add %a, %b : tensor<*xf32> %result = mhlo.add %a, %b : tensor<*xf32>
return %result : tensor<*xf32> return %result : tensor<*xf32>
} }