Add MLIR generated kernel for Angle kernel.

This also requires a canonicalization pattern to remove a redundant dynamic
reshape from rank 1 to rank 1.

PiperOrigin-RevId: 355113135
This commit is contained in:
Adrian Kuegel 2021-02-02 00:45:39 -08:00 committed by TensorFlow MLIR Team
parent 9d682343a9
commit 96f8771ed7
2 changed files with 51 additions and 2 deletions

View File

@ -1310,6 +1310,40 @@ class DynamicReshapeOpNotActuallyDynamic
}
};
// Canonicalizes
// %0 = some_op(%tensor)
// %1 = "mhlo.dynamic_reshape"(%0, %shape)
// (tensor<?xT>, tensor<1xindex>) -> tensor<?xT>
// ... uses of %1.
//
// into
//
// ... uses of %0.
// This canonicalization is only correct if the input is correct!
// TODO(b/178779691): Use a more sophisticated canonicalization that preserves
// errors in input, and still allows us to get rid of redundant reshapes.
class RemoveRedundantRank1DynamicReshape
: public OpRewritePattern<DynamicReshapeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(DynamicReshapeOp op,
PatternRewriter& rewriter) const override {
auto type = op.result().getType().dyn_cast<RankedTensorType>();
if (!type || type.getRank() != 1 || type.hasStaticShape()) {
return rewriter.notifyMatchFailure(
op, "requires rank 1 shape tensor with dynamic dimension");
}
auto operand_type = op.operand().getType().dyn_cast<RankedTensorType>();
if (!operand_type || operand_type.getRank() != 1 ||
operand_type.hasStaticShape()) {
return rewriter.notifyMatchFailure(
op, "requires rank 1 shape tensor with dynamic dimension");
}
rewriter.replaceOp(op, {op.operand()});
return success();
}
};
// Canonicalizes
// %0 = "mhlo.dynamic_reshape"(%tensor, %shape)
// %1 = same_operands_and_result_shape_op(%tensor)
@ -1354,6 +1388,7 @@ void DynamicReshapeOp::getCanonicalizationPatterns(
DynamicReshapeOpSameShapeOpResult,
RemoveRedundantDynamicBroadcast,
RemoveRedundantDynamicReshape,
RemoveRedundantRank1DynamicReshape,
ShapeOfDynamicReshape
>(context);
// clang-format on

View File

@ -594,12 +594,26 @@ func @shape_of_dynamic_reshape(%arg0: tensor<*xf32>, %shape: tensor<2xindex>) ->
return %1 : tensor<2xindex>
}
// CHECK-LABEL: func @dynamic_reshape_rank_1_to_rank_1
// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]
func @dynamic_reshape_rank_1_to_rank_1(%arg0: tensor<?xcomplex<f32>>,
%shape: tensor<?xindex>) -> tensor<?xf32> {
// CHECK: [[RES:%[a-zA-Z0-9]+]] = "mhlo.real"([[ARG0]]) : (tensor<?xcomplex<f32>>) -> tensor<?xf32>
// CHECK: return [[RES]]
%0 = "mhlo.real"(%arg0): (tensor<?xcomplex<f32>>) -> tensor<?xf32>
%1 = shape.shape_of %arg0 : tensor<?xcomplex<f32>> -> tensor<1xindex>
%2 = shape.num_elements %1 : tensor<1xindex> -> index
%3 = tensor.from_elements %2 : tensor<1xindex>
%4 = "mhlo.dynamic_reshape"(%0, %3)
: (tensor<?xf32>, tensor<1xindex>) -> tensor<?xf32>
return %4 : tensor<?xf32>
}
// CHECK-LABEL: func @dynamic_reshape_of_dynamic_reshape
// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]
// CHECK-SAME: [[ARG1:%[a-zA-Z0-9]+]]
func @dynamic_reshape_of_dynamic_reshape(%arg0: tensor<?xf16>, %shape: tensor<?xindex>) -> tensor<?xf16> {
// CHECK: [[RES:%[a-zA-Z0-9]+]] = "mhlo.dynamic_reshape"([[ARG0]], %{{[a-zA-Z0-9]+}}) : (tensor<?xf16>, tensor<1xindex>) -> tensor<?xf16>
// CHECK: return [[RES]]
// CHECK: return [[ARG0]]
%0 = "mhlo.dynamic_reshape"(%arg0, %shape) : (tensor<?xf16>, tensor<?xindex>) -> tensor<*xf16>
%1 = shape.shape_of %0 : tensor<*xf16> -> tensor<?xindex>
%2 = shape.num_elements %1 : tensor<?xindex> -> index