Move hlo end to end tests to the hlo directory tree.
PiperOrigin-RevId: 323955773
This commit is contained in:
parent
de5ddaf7c9
commit
b09bf2a4dc
|
@ -0,0 +1,213 @@
|
||||||
|
// RUN: mlir-hlo-opt %s -mhlo-test-chlo-legalize-to-hlo -hlo-legalize-to-lhlo=results-escape-function=true -buffer-placement -lhlo-copy-removal -canonicalize -cse -lhlo-legalize-to-linalg -lhlo-fuse-linalg -convert-linalg-to-loops -canonicalize -cse -convert-linalg-to-llvm -test-lhlo-legalize-to-llvm | mlir-cpu-runner -e main -entry-point-result=void -shared-libs=%mlir_runner_utils_dir/libmlir_runner_utils%shlibext | FileCheck %s
|
||||||
|
|
||||||
|
func @main() -> () {
|
||||||
|
call @trivial_broadcast_wrapper() : () -> ()
|
||||||
|
call @broadcast_in_X_dim_wrapper() : () -> ()
|
||||||
|
call @broadcast_in_Y_dim_wrapper() : () -> ()
|
||||||
|
call @broadcast_in_X_dim_transpose_wrapper() : () -> ()
|
||||||
|
call @broadcast_in_Y_dim_transpose_wrapper() : () -> ()
|
||||||
|
call @broadcast_scalar_1d_wrapper() : () -> ()
|
||||||
|
call @broadcast_scalar_2d_wrapper() : () -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func @print_memref_i8(memref<*xi8>) attributes { llvm.emit_c_interface }
|
||||||
|
func @print_memref_f32(memref<*xf32>) attributes { llvm.emit_c_interface }
|
||||||
|
|
||||||
|
func @trivial_broadcast_wrapper() {
|
||||||
|
%input = alloc() : memref<3xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0] : memref<3xf32>
|
||||||
|
%c2f32 = constant 2.0 : f32
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
store %c2f32, %input[%c1] : memref<3xf32>
|
||||||
|
%c3f32 = constant 3.0 : f32
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
store %c3f32, %input[%c2] : memref<3xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<3xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<0> : tensor<1xi64>
|
||||||
|
} : (tensor<3xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [2, 2, 2, 2]
|
||||||
|
// CHECK: [3, 3, 3, 3]
|
||||||
|
|
||||||
|
func @broadcast_in_X_dim_wrapper() {
|
||||||
|
%input = alloc() : memref<1x4xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0, %c0] : memref<1x4xf32>
|
||||||
|
%c2f32 = constant 2.0 : f32
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
store %c2f32, %input[%c0, %c1] : memref<1x4xf32>
|
||||||
|
%c3f32 = constant 3.0 : f32
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
store %c3f32, %input[%c0, %c2] : memref<1x4xf32>
|
||||||
|
%c4f32 = constant 4.0 : f32
|
||||||
|
%c3 = constant 3 : index
|
||||||
|
store %c4f32, %input[%c0, %c3] : memref<1x4xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<1x4xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
|
||||||
|
} : (tensor<1x4xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
|
||||||
|
func @broadcast_in_Y_dim_wrapper() {
|
||||||
|
%input = alloc() : memref<3x1xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0, %c0] : memref<3x1xf32>
|
||||||
|
%c2f32 = constant 2.0 : f32
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
store %c2f32, %input[%c1, %c0] : memref<3x1xf32>
|
||||||
|
%c3f32 = constant 3.0 : f32
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
store %c3f32, %input[%c2, %c0] : memref<3x1xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<3x1xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
|
||||||
|
} : (tensor<3x1xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [2, 2, 2, 2]
|
||||||
|
// CHECK: [3, 3, 3, 3]
|
||||||
|
|
||||||
|
func @broadcast_in_X_dim_transpose_wrapper() {
|
||||||
|
%input = alloc() : memref<4x1xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0, %c0] : memref<4x1xf32>
|
||||||
|
%c2f32 = constant 2.0 : f32
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
store %c2f32, %input[%c1, %c0] : memref<4x1xf32>
|
||||||
|
%c3f32 = constant 3.0 : f32
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
store %c3f32, %input[%c2, %c0] : memref<4x1xf32>
|
||||||
|
%c4f32 = constant 4.0 : f32
|
||||||
|
%c3 = constant 3 : index
|
||||||
|
store %c4f32, %input[%c3, %c0] : memref<4x1xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<4x1xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>
|
||||||
|
} : (tensor<4x1xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
// CHECK: [1, 2, 3, 4]
|
||||||
|
|
||||||
|
func @broadcast_in_Y_dim_transpose_wrapper() {
|
||||||
|
%input = alloc() : memref<1x3xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0, %c0] : memref<1x3xf32>
|
||||||
|
%c2f32 = constant 2.0 : f32
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
store %c2f32, %input[%c0, %c1] : memref<1x3xf32>
|
||||||
|
%c3f32 = constant 3.0 : f32
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
store %c3f32, %input[%c0, %c2] : memref<1x3xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<1x3xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>
|
||||||
|
} : (tensor<1x3xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [2, 2, 2, 2]
|
||||||
|
// CHECK: [3, 3, 3, 3]
|
||||||
|
|
||||||
|
func @broadcast_scalar_1d_wrapper() {
|
||||||
|
%input = alloc() : memref<1xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0] : memref<1xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<1xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<0> : tensor<1xi64>
|
||||||
|
} : (tensor<1xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
|
||||||
|
func @broadcast_scalar_2d_wrapper() {
|
||||||
|
%input = alloc() : memref<1x1xf32>
|
||||||
|
%c1f32 = constant 1.0 : f32
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
store %c1f32, %input[%c0, %c0] : memref<1x1xf32>
|
||||||
|
%input_tensor = tensor_load %input : memref<1x1xf32>
|
||||||
|
|
||||||
|
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
|
||||||
|
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
|
||||||
|
} : (tensor<1x1xf32>) -> tensor<3x4xf32>
|
||||||
|
|
||||||
|
%output = alloc() : memref<3x4xf32>
|
||||||
|
tensor_store %output_tensor, %output : memref<3x4xf32>
|
||||||
|
|
||||||
|
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
// CHECK: [1, 1, 1, 1]
|
||||||
|
|
|
@ -0,0 +1,190 @@
|
||||||
|
// RUN: mlir-hlo-opt %s -mhlo-test-chlo-legalize-to-hlo -hlo-legalize-to-lhlo=results-escape-function=true -buffer-placement -lhlo-copy-removal -canonicalize -cse -lhlo-legalize-to-linalg -lhlo-fuse-linalg -convert-linalg-to-loops -convert-scf-to-std -canonicalize -cse -test-lhlo-legalize-to-llvm | mlir-cpu-runner -e main -entry-point-result=void -shared-libs=%mlir_runner_utils_dir/libmlir_runner_utils%shlibext | FileCheck %s
|
||||||
|
|
||||||
|
func @main() -> () {
|
||||||
|
call @reshape_with_static_shape_size_matrix_to_1D() : () -> ()
|
||||||
|
call @reshape_with_static_shape_size_matrix_to_3D() : () -> ()
|
||||||
|
call @reshape_with_dynamic_shape_size_matrix_to_1D() : () -> ()
|
||||||
|
call @reshape_with_dynamic_shape_size_matrix_to_3D() : () -> ()
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func @print_memref_f32(memref<*xf32>) attributes { llvm.emit_c_interface }
|
||||||
|
|
||||||
|
func @reshape_with_static_shape_size_matrix_to_1D() {
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
|
||||||
|
// Initialize input.
|
||||||
|
%input = alloc() : memref<2x3xf32>
|
||||||
|
%dim_x = dim %input, %c0 : memref<2x3xf32>
|
||||||
|
%dim_y = dim %input, %c1 : memref<2x3xf32>
|
||||||
|
scf.parallel (%i, %j) = (%c0, %c0) to (%dim_x, %dim_y) step (%c1, %c1) {
|
||||||
|
%i_i64 = index_cast %i : index to i64
|
||||||
|
%i_f32 = sitofp %i_i64 : i64 to f32
|
||||||
|
store %i_f32, %input[%i, %j] : memref<2x3xf32>
|
||||||
|
}
|
||||||
|
%unranked_input = memref_cast %input : memref<2x3xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_input) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [2, 3] strides = [3, 1]
|
||||||
|
// CHECK: [0, 0, 0]
|
||||||
|
// CHECK: [1, 1, 1]
|
||||||
|
|
||||||
|
// Initialize shape.
|
||||||
|
%shape = alloc() : memref<1xi64>
|
||||||
|
%num_elements = muli %dim_x, %dim_y : index
|
||||||
|
%num_elements_i64 = index_cast %num_elements : index to i64
|
||||||
|
store %num_elements_i64, %shape[%c0] : memref<1xi64>
|
||||||
|
|
||||||
|
// 1. Ranked input, ranked output.
|
||||||
|
%output_1 = lmhlo.reshape_memref_cast %input(%shape)
|
||||||
|
: (memref<2x3xf32>, memref<1xi64>) -> memref<6xf32>
|
||||||
|
%unranked_output_1 = memref_cast %output_1 : memref<6xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_output_1) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
|
||||||
|
// 2. Ranked input, unranked output.
|
||||||
|
%output_2 = lmhlo.reshape_memref_cast %input(%shape)
|
||||||
|
: (memref<2x3xf32>, memref<1xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%output_2) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
|
||||||
|
// 3. Unranked input, ranked output.
|
||||||
|
%output_3 = lmhlo.reshape_memref_cast %unranked_input(%shape)
|
||||||
|
: (memref<*xf32>, memref<1xi64>) -> memref<?xf32>
|
||||||
|
%unranked_output_3 = memref_cast %output_3 : memref<?xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_output_3) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
|
||||||
|
// 4. Unranked input, unranked output.
|
||||||
|
%output_4 = lmhlo.reshape_memref_cast %unranked_input(%shape)
|
||||||
|
: (memref<*xf32>, memref<1xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%output_4) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func @reshape_with_static_shape_size_matrix_to_3D() {
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
|
||||||
|
// Initialize input.
|
||||||
|
%input = alloc() : memref<2x3xf32>
|
||||||
|
%dim_x = dim %input, %c0 : memref<2x3xf32>
|
||||||
|
%dim_y = dim %input, %c1 : memref<2x3xf32>
|
||||||
|
scf.parallel (%i, %j) = (%c0, %c0) to (%dim_x, %dim_y) step (%c1, %c1) {
|
||||||
|
%i_i64 = index_cast %i : index to i64
|
||||||
|
%i_f32 = sitofp %i_i64 : i64 to f32
|
||||||
|
store %i_f32, %input[%i, %j] : memref<2x3xf32>
|
||||||
|
}
|
||||||
|
%unranked_input = memref_cast %input : memref<2x3xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_input) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [2, 3] strides = [3, 1]
|
||||||
|
// CHECK: [0, 0, 0]
|
||||||
|
// CHECK: [1, 1, 1]
|
||||||
|
|
||||||
|
// Initialize shape.
|
||||||
|
%shape = alloc() : memref<3xi64>
|
||||||
|
%c1_i64 = constant 1 : i64
|
||||||
|
%c2_i64 = constant 2 : i64
|
||||||
|
%c3_i64 = constant 3 : i64
|
||||||
|
store %c3_i64, %shape[%c0] : memref<3xi64>
|
||||||
|
store %c1_i64, %shape[%c1] : memref<3xi64>
|
||||||
|
store %c2_i64, %shape[%c2] : memref<3xi64>
|
||||||
|
|
||||||
|
// Static shape input and shape, dynamic output.
|
||||||
|
%unranked_output = lmhlo.reshape_memref_cast %input(%shape)
|
||||||
|
: (memref<2x3xf32>, memref<3xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 3 offset = 0 sizes = [3, 1, 2] strides = [2, 2, 1]
|
||||||
|
// CHECK: {{\[}}{{\[}}[0, 0]],
|
||||||
|
// CHECK: {{\[}}[0, 1]],
|
||||||
|
// CHECK: {{\[}}[1, 1]]]
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func @reshape_with_dynamic_shape_size_matrix_to_1D() {
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
|
||||||
|
// Initialize input.
|
||||||
|
%input = alloc() : memref<2x3xf32>
|
||||||
|
%dim_x = dim %input, %c0 : memref<2x3xf32>
|
||||||
|
%dim_y = dim %input, %c1 : memref<2x3xf32>
|
||||||
|
scf.parallel (%i, %j) = (%c0, %c0) to (%dim_x, %dim_y) step (%c1, %c1) {
|
||||||
|
%i_i64 = index_cast %i : index to i64
|
||||||
|
%i_f32 = sitofp %i_i64 : i64 to f32
|
||||||
|
store %i_f32, %input[%i, %j] : memref<2x3xf32>
|
||||||
|
}
|
||||||
|
%unranked_input = memref_cast %input : memref<2x3xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_input) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [2, 3] strides = [3, 1]
|
||||||
|
// CHECK: [0, 0, 0]
|
||||||
|
// CHECK: [1, 1, 1]
|
||||||
|
|
||||||
|
// Initialize shape.
|
||||||
|
%shape = alloc(%c1) : memref<?xi64>
|
||||||
|
%num_elements = muli %dim_x, %dim_y : index
|
||||||
|
%num_elements_i64 = index_cast %num_elements : index to i64
|
||||||
|
store %num_elements_i64, %shape[%c0] : memref<?xi64>
|
||||||
|
|
||||||
|
// 1. Ranked input, unranked output.
|
||||||
|
%output_2 = lmhlo.reshape_memref_cast %input(%shape)
|
||||||
|
: (memref<2x3xf32>, memref<?xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%output_2) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
|
||||||
|
// 2. Unranked input, unranked output.
|
||||||
|
%output_4 = lmhlo.reshape_memref_cast %unranked_input(%shape)
|
||||||
|
: (memref<*xf32>, memref<?xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%output_4) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 1 offset = 0 sizes = [6] strides = [1]
|
||||||
|
// CHECK: [0, 0, 0, 1, 1, 1]
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
func @reshape_with_dynamic_shape_size_matrix_to_3D() {
|
||||||
|
%c0 = constant 0 : index
|
||||||
|
%c1 = constant 1 : index
|
||||||
|
%c2 = constant 2 : index
|
||||||
|
%c3 = constant 3 : index
|
||||||
|
|
||||||
|
// Initialize input.
|
||||||
|
%input = alloc() : memref<2x3xf32>
|
||||||
|
%dim_x = dim %input, %c0 : memref<2x3xf32>
|
||||||
|
%dim_y = dim %input, %c1 : memref<2x3xf32>
|
||||||
|
scf.parallel (%i, %j) = (%c0, %c0) to (%dim_x, %dim_y) step (%c1, %c1) {
|
||||||
|
%i_i64 = index_cast %i : index to i64
|
||||||
|
%i_f32 = sitofp %i_i64 : i64 to f32
|
||||||
|
store %i_f32, %input[%i, %j] : memref<2x3xf32>
|
||||||
|
}
|
||||||
|
%unranked_input = memref_cast %input : memref<2x3xf32> to memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_input) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 2 offset = 0 sizes = [2, 3] strides = [3, 1]
|
||||||
|
// CHECK: [0, 0, 0]
|
||||||
|
// CHECK: [1, 1, 1]
|
||||||
|
|
||||||
|
// Initialize shape.
|
||||||
|
%shape = alloc(%c3) : memref<?xi64>
|
||||||
|
%c1_i64 = constant 1 : i64
|
||||||
|
%c2_i64 = constant 2 : i64
|
||||||
|
%c3_i64 = constant 3 : i64
|
||||||
|
store %c3_i64, %shape[%c0] : memref<?xi64>
|
||||||
|
store %c1_i64, %shape[%c1] : memref<?xi64>
|
||||||
|
store %c2_i64, %shape[%c2] : memref<?xi64>
|
||||||
|
|
||||||
|
// Static shape input, dynamic output and shape.
|
||||||
|
%unranked_output = lmhlo.reshape_memref_cast %input(%shape)
|
||||||
|
: (memref<2x3xf32>, memref<?xi64>) -> memref<*xf32>
|
||||||
|
call @print_memref_f32(%unranked_output) : (memref<*xf32>) -> ()
|
||||||
|
// CHECK: rank = 3 offset = 0 sizes = [3, 1, 2] strides = [2, 2, 1]
|
||||||
|
// CHECK: {{\[}}{{\[}}[0, 0]],
|
||||||
|
// CHECK: {{\[}}[0, 1]],
|
||||||
|
// CHECK: {{\[}}[1, 1]]]
|
||||||
|
return
|
||||||
|
}
|
Loading…
Reference in New Issue