Add support for lowering DataMovementOp ops to Linalg on unsigned types.

PiperOrigin-RevId: 379527360
This commit is contained in:
Hanhan Wang 2021-06-15 10:57:15 -07:00 committed by TensorFlow MLIR Team
parent 3afbe312f8
commit b44ab8ad49
2 changed files with 20 additions and 0 deletions

View File

@ -406,6 +406,8 @@ class DataMovementOpConverter : public OpConversionPattern<OpTy> {
ConversionPatternRewriter& rewriter) const final {
if (!VerifyHloOpBufferOrTensorSemantics<isLHLO>(op)) return failure();
auto result_type = GetHloOpResultType<isLHLO>(op);
result_type = this->typeConverter->convertType(result_type)
.template cast<ShapedType>();
SmallVector<AffineMap, 2> indexing_maps =
Derived::getIndexingMaps(op, &rewriter);

View File

@ -493,6 +493,24 @@ func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> {
// -----
// CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, 0)>
// CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
// CHECK-LABEL: func @broadcast_in_dim_ui32
func @broadcast_in_dim_ui32(%operand: tensor<5x7x1xui32>) -> tensor<7x10x6x4x5xui32> {
%0 = "mhlo.broadcast_in_dim"(%operand)
{broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>}
: (tensor<5x7x1xui32>) -> tensor<7x10x6x4x5xui32>
return %0 : tensor<7x10x6x4x5xui32>
}
// CHECK: unrealized_conversion_cast %{{.*}} : tensor<5x7x1xui32> to tensor<5x7x1xi32>
// CHECK: linalg.init_tensor [7, 10, 6, 4, 5] : tensor<7x10x6x4x5xi32>
// CHECK: %[[RES:.*]] = linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]]
// CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: i32, %{{.*}}: i32):
// CHECK-NEXT: linalg.yield %[[OPERAND]] : i32
// CHECK: unrealized_conversion_cast %[[RES]] : tensor<7x10x6x4x5xi32> to tensor<7x10x6x4x5xui32>
// -----
// CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-LABEL: func @broadcast_in_dim_with_one_to_one