[MLIR][HLO] Add equal shapes case to rank specialization
Also restructure lowering implementation to facilitate the addition or removal of special cases. PiperOrigin-RevId: 374626365
This commit is contained in:
parent
71394fb301
commit
c62fd89663
|
@ -182,10 +182,10 @@ bool IsScalarTensorType(Type ty) {
|
|||
}
|
||||
|
||||
Type DeriveRankedTensorTypes(Type ty, int64_t rank) {
|
||||
auto unranked_ty = ty.dyn_cast<UnrankedTensorType>();
|
||||
if (!unranked_ty) return ty;
|
||||
auto tensor_ty = ty.dyn_cast<TensorType>();
|
||||
if (!tensor_ty) return ty;
|
||||
SmallVector<int64_t, 8> shape(rank, ShapedType::kDynamicSize);
|
||||
return RankedTensorType::get(shape, unranked_ty.getElementType());
|
||||
return RankedTensorType::get(shape, tensor_ty.getElementType());
|
||||
}
|
||||
|
||||
Type DeriveUnrankedTensorTypes(Type ty) {
|
||||
|
@ -208,7 +208,7 @@ Optional<Value> FindUniqueNonScalar(ValueRange values) {
|
|||
|
||||
SmallVector<Value, 8> MaterializeRankedOperations(
|
||||
OpBuilder &b, Location loc, BlockAndValueMapping &bvm,
|
||||
chlo::RankSpecializationClusterOp &op, int64_t target_rank) {
|
||||
chlo::RankSpecializationClusterOp op, int64_t target_rank) {
|
||||
// Create ranked operations.
|
||||
for (Operation &nested_op : op.getBody()->without_terminator()) {
|
||||
auto mapped_operands = llvm::to_vector<4>(llvm::map_range(
|
||||
|
@ -256,59 +256,101 @@ SmallVector<Value, 8> MaterializeFinalReshape(
|
|||
}));
|
||||
}
|
||||
|
||||
struct LowerSingleNonScalarOperandPattern
|
||||
: public OpRewritePattern<chlo::RankSpecializationClusterOp> {
|
||||
using OpRewritePattern<chlo::RankSpecializationClusterOp>::OpRewritePattern;
|
||||
SmallVector<Value, 8> MaterializeRankSpecializationForSingleNonScalarOperand(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op,
|
||||
Value non_scalar_operand) {
|
||||
// Flatten the non-scalar operand.
|
||||
Value flat_shape = b.create<tensor::FromElementsOp>(
|
||||
loc, b.create<shape::NumElementsOp>(
|
||||
loc, b.getIndexType(),
|
||||
b.create<shape::ShapeOfOp>(loc, non_scalar_operand))
|
||||
.result());
|
||||
Value flat_non_scalar_operand = b.create<mhlo::DynamicReshapeOp>(
|
||||
loc, DeriveRankedTensorTypes(non_scalar_operand.getType(), /*rank=*/1),
|
||||
non_scalar_operand, flat_shape);
|
||||
|
||||
LogicalResult matchAndRewrite(chlo::RankSpecializationClusterOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
// Only apply this pattern if we can statically know that all operands have
|
||||
// the same shape or are scalars, i.e. all but one operands are scalars.
|
||||
Optional<Value> non_scalar_operand = FindUniqueNonScalar(op.operands());
|
||||
if (!non_scalar_operand) return failure();
|
||||
|
||||
// Flatten the non-scalar operand.
|
||||
Location loc = op.getLoc();
|
||||
Value flat_shape = rewriter.create<tensor::FromElementsOp>(
|
||||
loc,
|
||||
rewriter
|
||||
.create<shape::NumElementsOp>(
|
||||
loc, rewriter.getIndexType(),
|
||||
rewriter.create<shape::ShapeOfOp>(loc, *non_scalar_operand))
|
||||
.result());
|
||||
Value flat_non_scalar_operand = rewriter.create<mhlo::DynamicReshapeOp>(
|
||||
loc, DeriveRankedTensorTypes(non_scalar_operand->getType(), /*rank=*/1),
|
||||
*non_scalar_operand, flat_shape);
|
||||
|
||||
// Materialize ranked variants for the element-wise operations.
|
||||
BlockAndValueMapping bvm;
|
||||
for (auto it : llvm::zip(op.getBody()->getArguments(), op.operands())) {
|
||||
Value operand = std::get<1>(it);
|
||||
bvm.map(std::get<0>(it), operand == *non_scalar_operand
|
||||
? flat_non_scalar_operand
|
||||
: operand);
|
||||
}
|
||||
SmallVector<Value, 8> unshaped_results =
|
||||
MaterializeRankedOperations(rewriter, loc, bvm, op, /*target_rank=*/1);
|
||||
|
||||
// Restore the results' expected shape.
|
||||
SmallVector<Value, 8> results =
|
||||
MaterializeFinalReshape(rewriter, loc, op, unshaped_results);
|
||||
rewriter.replaceOp(op, results);
|
||||
return success();
|
||||
// Materialize ranked variants for the element-wise operations.
|
||||
BlockAndValueMapping bvm;
|
||||
for (auto it : llvm::zip(op.getBody()->getArguments(), op.operands())) {
|
||||
Value operand = std::get<1>(it);
|
||||
bvm.map(std::get<0>(it),
|
||||
operand == non_scalar_operand ? flat_non_scalar_operand : operand);
|
||||
}
|
||||
};
|
||||
SmallVector<Value, 8> unshaped_results =
|
||||
MaterializeRankedOperations(b, loc, bvm, op, /*target_rank=*/1);
|
||||
|
||||
Value MaterializeRankSpecialization(OpBuilder &b, Location loc,
|
||||
chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes,
|
||||
int64_t target_rank) {
|
||||
// Restore the results' expected shape.
|
||||
return MaterializeFinalReshape(b, loc, op, unshaped_results);
|
||||
}
|
||||
|
||||
Value MaterializeEqualShapesRankSpecializationCase(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes,
|
||||
function_ref<void(OpBuilder &, Location)> else_builder_fn) {
|
||||
assert(shapes.size() >= 2 &&
|
||||
"This strategy should only be materialized if there are at least two "
|
||||
"shapes involved.");
|
||||
|
||||
// Materialize all shapes equal predicate.
|
||||
Value all_shapes_eq;
|
||||
for (Value s : llvm::drop_begin(shapes)) {
|
||||
auto literal = b.create<shape::ShapeEqOp>(loc, shapes.front(), s);
|
||||
all_shapes_eq =
|
||||
all_shapes_eq
|
||||
? b.create<mlir::AndOp>(loc, all_shapes_eq, literal).result()
|
||||
: literal;
|
||||
}
|
||||
|
||||
auto if_op = b.create<scf::IfOp>(
|
||||
loc, op->getResultTypes(), all_shapes_eq,
|
||||
[&](OpBuilder &b, Location loc) {
|
||||
// Flatten operands.
|
||||
Value shape = shapes.front();
|
||||
for (Value s : llvm::drop_begin(shapes)) {
|
||||
shape = b.create<shape::AnyOp>(loc, shape.getType(),
|
||||
ValueRange{shape, s});
|
||||
}
|
||||
Value flat_shape = b.create<tensor::FromElementsOp>(
|
||||
loc, b.create<shape::NumElementsOp>(loc, b.getIndexType(), shape)
|
||||
.result());
|
||||
SmallVector<Value, 8> flat_operands =
|
||||
llvm::to_vector<8>(llvm::map_range(op.operands(), [&](Value v) {
|
||||
return b
|
||||
.create<mhlo::DynamicReshapeOp>(
|
||||
loc, DeriveRankedTensorTypes(v.getType(), /*rank=*/1), v,
|
||||
flat_shape)
|
||||
.result();
|
||||
}));
|
||||
|
||||
// Materialize ranked variants for the element-wise operations.
|
||||
// TODO(frgossen): Materializae non-broadcasting equivalents instead.
|
||||
BlockAndValueMapping bvm;
|
||||
for (auto it : llvm::zip(op.getBody()->getArguments(), flat_operands))
|
||||
bvm.map(std::get<0>(it), std::get<1>(it));
|
||||
Value unshaped_result =
|
||||
MaterializeRankedOperations(b, loc, bvm, op, /*target_rank=*/1)
|
||||
.front();
|
||||
|
||||
// Return as unranked tensor for compatibility with the other cases.
|
||||
b.create<scf::YieldOp>(
|
||||
loc, b.create<tensor::CastOp>(
|
||||
loc, DeriveUnrankedTensorTypes(unshaped_result.getType()),
|
||||
unshaped_result)
|
||||
.dest());
|
||||
},
|
||||
else_builder_fn);
|
||||
|
||||
return if_op.results().front();
|
||||
}
|
||||
|
||||
Value MaterializeTargetRankSpecializationCase(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes, int64_t target_rank) {
|
||||
// Reshape operands to match the target rank.
|
||||
MLIRContext *ctx = op->getContext();
|
||||
llvm::SmallVector<int64_t, 8> ranked_ty_dynamic_dims(
|
||||
target_rank, RankedTensorType::kDynamicSize);
|
||||
RankedTensorType extent_tensor_ty =
|
||||
shape::getExtentTensorType(ctx, target_rank);
|
||||
shape::getExtentTensorType(b.getContext(), target_rank);
|
||||
Value all_ones_shape = b.create<shape::ConstShapeOp>(
|
||||
loc, extent_tensor_ty,
|
||||
mlir::DenseIntElementsAttr::get(extent_tensor_ty,
|
||||
|
@ -319,7 +361,8 @@ Value MaterializeRankSpecialization(OpBuilder &b, Location loc,
|
|||
std::tie(operand, shape) = it;
|
||||
Value ranked_shape = b.create<tensor::CastOp>(
|
||||
loc, extent_tensor_ty,
|
||||
b.create<shape::BroadcastOp>(loc, shape::getExtentTensorType(ctx),
|
||||
b.create<shape::BroadcastOp>(loc,
|
||||
shape::getExtentTensorType(b.getContext()),
|
||||
shape, all_ones_shape,
|
||||
/*error=*/nullptr));
|
||||
Type element_ty = operand.getType().dyn_cast<TensorType>().getElementType();
|
||||
|
@ -341,11 +384,10 @@ Value MaterializeRankSpecialization(OpBuilder &b, Location loc,
|
|||
unshaped_result);
|
||||
}
|
||||
|
||||
Value MaterializeAllRankSpecializations(OpBuilder &b, Location loc,
|
||||
chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes,
|
||||
Value max_rank, int64_t min_target_rank,
|
||||
int64_t max_target_rank) {
|
||||
Value RecusivelyMaterializeTargetRankSpecializationCases(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes, Value max_rank,
|
||||
int64_t min_target_rank, int64_t max_target_rank) {
|
||||
Value min_target_rank_predicate =
|
||||
b.create<CmpIOp>(loc, CmpIPredicate::eq, max_rank,
|
||||
b.create<ConstantIndexOp>(loc, min_target_rank));
|
||||
|
@ -357,7 +399,8 @@ Value MaterializeAllRankSpecializations(OpBuilder &b, Location loc,
|
|||
"Input for dynamic binary or n-ary op lowering was of "
|
||||
"a rank greater than " +
|
||||
std::to_string(max_target_rank));
|
||||
return MaterializeRankSpecialization(b, loc, op, shapes, min_target_rank);
|
||||
return MaterializeTargetRankSpecializationCase(b, loc, op, shapes,
|
||||
min_target_rank);
|
||||
}
|
||||
|
||||
// Materialize IR for the smallest considered target rank.
|
||||
|
@ -366,84 +409,107 @@ Value MaterializeAllRankSpecializations(OpBuilder &b, Location loc,
|
|||
/*withElseRegion=*/true);
|
||||
auto then_builder = if_op.getThenBodyBuilder();
|
||||
then_builder.create<scf::YieldOp>(
|
||||
loc, MaterializeRankSpecialization(then_builder, loc, op, shapes,
|
||||
min_target_rank));
|
||||
loc, MaterializeTargetRankSpecializationCase(then_builder, loc, op,
|
||||
shapes, min_target_rank));
|
||||
|
||||
// Recur for all remaining target ranks.
|
||||
// Recurse for all remaining target ranks.
|
||||
auto else_builder = if_op.getElseBodyBuilder();
|
||||
else_builder.create<scf::YieldOp>(
|
||||
loc,
|
||||
MaterializeAllRankSpecializations(else_builder, loc, op, shapes, max_rank,
|
||||
min_target_rank + 1, max_target_rank));
|
||||
loc, RecusivelyMaterializeTargetRankSpecializationCases(
|
||||
else_builder, loc, op, shapes, max_rank, min_target_rank + 1,
|
||||
max_target_rank));
|
||||
|
||||
return if_op.results().front();
|
||||
}
|
||||
|
||||
struct LowerMultipleNonScalarOperandPattern
|
||||
Value MaterializeGenericRankSpecializationCases(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op,
|
||||
const SmallVector<Value, 8> &shapes) {
|
||||
// Get the minimum broadcast shapes of the operands.
|
||||
ValueRange reduced_shapes =
|
||||
b.create<chlo::MinimumBroadcastShapesOp>(
|
||||
loc,
|
||||
SmallVector<Type, 8>(shapes.size(),
|
||||
shape::getExtentTensorType(b.getContext())),
|
||||
shapes)
|
||||
.results();
|
||||
// TODO(frgossen): Avoid this reshape if it is redundant in all cases.
|
||||
SmallVector<Value, 8> reshaped_args;
|
||||
for (auto it : llvm::zip(op.operands(), reduced_shapes)) {
|
||||
Value arg = std::get<0>(it);
|
||||
Value reduced_shape = std::get<1>(it);
|
||||
reshaped_args.push_back(b.create<mhlo::DynamicReshapeOp>(
|
||||
loc, arg.getType(), arg, reduced_shape));
|
||||
}
|
||||
|
||||
// Find the maximum rank among the reduced operand shapes.
|
||||
Value max_rank;
|
||||
for (Value shape : reduced_shapes) {
|
||||
Value rank = b.create<shape::RankOp>(loc, b.getIndexType(), shape);
|
||||
if (!max_rank) {
|
||||
max_rank = rank;
|
||||
} else {
|
||||
max_rank = b.create<mlir::SelectOp>(
|
||||
loc, b.create<CmpIOp>(loc, CmpIPredicate::sgt, max_rank, rank),
|
||||
max_rank, rank);
|
||||
}
|
||||
}
|
||||
|
||||
// Materialize rank specialization for ranks 1, ..., 8.
|
||||
// TODO(frgossen): For clusters w/o a select operation, consider only ranks
|
||||
// 1, ..., 5.
|
||||
const int64_t kMinTargetRank = 1;
|
||||
const int64_t kMaxTargetRank = 8;
|
||||
return RecusivelyMaterializeTargetRankSpecializationCases(
|
||||
b, loc, op, reduced_shapes, max_rank, kMinTargetRank, kMaxTargetRank);
|
||||
}
|
||||
|
||||
Value MaterializeDefaultRankSpecialization(
|
||||
OpBuilder &b, Location loc, chlo::RankSpecializationClusterOp op) {
|
||||
auto shapes = llvm::to_vector<8>(llvm::map_range(op.operands(), [&](Value v) {
|
||||
return b.create<shape::ShapeOfOp>(loc, v).result();
|
||||
}));
|
||||
|
||||
// Materialize all the different cases.
|
||||
Value unshaped_result = MaterializeEqualShapesRankSpecializationCase(
|
||||
b, loc, op, shapes, [&](OpBuilder &b, Location loc) {
|
||||
b.create<scf::YieldOp>(
|
||||
loc, MaterializeGenericRankSpecializationCases(b, loc, op, shapes));
|
||||
});
|
||||
|
||||
// Materialize final reshape once and for all rank specialization cases.
|
||||
return MaterializeFinalReshape(b, loc, op, unshaped_result).front();
|
||||
}
|
||||
|
||||
struct LowerRankSpecializationClusterPattern
|
||||
: public OpRewritePattern<chlo::RankSpecializationClusterOp> {
|
||||
using OpRewritePattern<chlo::RankSpecializationClusterOp>::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(chlo::RankSpecializationClusterOp op,
|
||||
PatternRewriter &rewriter) const override {
|
||||
// We have a specialized pattern for the case in which all but one operands
|
||||
// are scalars.
|
||||
if (FindUniqueNonScalar(op.operands())) return failure();
|
||||
// TODO(frgossen): If there is a single operand, we can flatten it
|
||||
// completely and apply a non-broadcasting operation.
|
||||
|
||||
// If there is only one unranked operand and all others are known scalars,
|
||||
// we can flatten the operands to rank 1.
|
||||
Location loc = op.getLoc();
|
||||
if (Optional<Value> non_scalar_operand =
|
||||
FindUniqueNonScalar(op.operands())) {
|
||||
rewriter.replaceOp(op,
|
||||
MaterializeRankSpecializationForSingleNonScalarOperand(
|
||||
rewriter, loc, op, *non_scalar_operand));
|
||||
return success();
|
||||
}
|
||||
|
||||
// Restoring the result shape currently relies on all operands being used
|
||||
// for a single result. The result shape is then the broadcasted shape of
|
||||
// all operands.
|
||||
if (op.getNumResults() != 1) return failure();
|
||||
|
||||
// Get the minimum broadcast shapes of the operands.
|
||||
Location loc = op.getLoc();
|
||||
SmallVector<Value, 8> shapes =
|
||||
llvm::to_vector<8>(llvm::map_range(op.operands(), [&](Value v) {
|
||||
return rewriter.create<shape::ShapeOfOp>(loc, v).result();
|
||||
}));
|
||||
ValueRange reduced_shapes =
|
||||
rewriter
|
||||
.create<chlo::MinimumBroadcastShapesOp>(
|
||||
loc,
|
||||
SmallVector<Type, 8>(shapes.size(),
|
||||
shape::getExtentTensorType(getContext())),
|
||||
shapes)
|
||||
.results();
|
||||
// TODO(frgossen): Avoid this reshape if it is redundant in all cases.
|
||||
SmallVector<Value, 8> reshaped_args;
|
||||
for (auto it : llvm::zip(op.operands(), reduced_shapes)) {
|
||||
Value arg = std::get<0>(it);
|
||||
Value reduced_shape = std::get<1>(it);
|
||||
reshaped_args.push_back(rewriter.create<mhlo::DynamicReshapeOp>(
|
||||
loc, arg.getType(), arg, reduced_shape));
|
||||
}
|
||||
|
||||
// Find the maximum rank among the reduced operand shapes.
|
||||
Value max_rank;
|
||||
for (Value shape : reduced_shapes) {
|
||||
Value rank =
|
||||
rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), shape);
|
||||
if (!max_rank) {
|
||||
max_rank = rank;
|
||||
} else {
|
||||
max_rank = rewriter.create<mlir::SelectOp>(
|
||||
loc,
|
||||
rewriter.create<CmpIOp>(loc, CmpIPredicate::sgt, max_rank, rank),
|
||||
max_rank, rank);
|
||||
}
|
||||
}
|
||||
|
||||
// Materialize rank specialization for ranks 1, ..., 8.
|
||||
// TODO(frgossen): For clusters w/o a select operation, consider only ranks
|
||||
// 1, ..., 5.
|
||||
const int64_t kMinTargetRank = 1;
|
||||
const int64_t kMaxTargetRank = 8;
|
||||
Value unshaped_result = MaterializeAllRankSpecializations(
|
||||
rewriter, loc, op, reduced_shapes, max_rank, kMinTargetRank,
|
||||
kMaxTargetRank);
|
||||
|
||||
// Materialize final reshape once and for all rank specialization cases.
|
||||
rewriter.replaceOp(
|
||||
op, MaterializeFinalReshape(rewriter, loc, op, unshaped_result));
|
||||
// For all other cases, reshape the operands to match in rank, apply the
|
||||
// operation, and restore the expected shape.
|
||||
rewriter.replaceOp(op,
|
||||
MaterializeDefaultRankSpecialization(rewriter, loc, op));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
@ -475,8 +541,7 @@ void PopulateRankSpecializationClusterPatterns(
|
|||
|
||||
void PopulateRankSpecializationToSCFPatterns(
|
||||
MLIRContext *context, OwningRewritePatternList *patterns) {
|
||||
patterns->insert<LowerSingleNonScalarOperandPattern,
|
||||
LowerMultipleNonScalarOperandPattern>(context);
|
||||
patterns->insert<LowerRankSpecializationClusterPattern>(context);
|
||||
}
|
||||
|
||||
std::unique_ptr<FunctionPass> createRankSpecializationClusterPass() {
|
||||
|
|
|
@ -40,162 +40,180 @@ func @add_mul(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>,
|
|||
// CHECK-SCF-DAG: %[[SHAPE_ARG0:.*]] = shape.shape_of %[[ARG0]]
|
||||
// CHECK-SCF-DAG: %[[SHAPE_ARG1:.*]] = shape.shape_of %[[ARG1]]
|
||||
// CHECK-SCF-DAG: %[[SHAPE_ARG2:.*]] = shape.shape_of %[[ARG2]]
|
||||
// Find maximum reduced rank.
|
||||
// CHECK-SCF-DAG: %[[REDUCED_SHAPES:.*]]:3 = chlo.minimum_broadcast_shapes %[[SHAPE_ARG2]], %[[SHAPE_ARG0]], %[[SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK0:.*]] = shape.rank %[[REDUCED_SHAPES]]#1
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK1:.*]] = shape.rank %[[REDUCED_SHAPES]]#2
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK2:.*]] = shape.rank %[[REDUCED_SHAPES]]#0
|
||||
// CHECK-SCF-DAG: %[[R2_GT_R0:.*]] = cmpi sgt, %[[REDUCED_RANK2]], %[[REDUCED_RANK0]]
|
||||
// CHECK-SCF-DAG: %[[R20:.*]] = select %[[R2_GT_R0]], %[[REDUCED_RANK2]], %[[REDUCED_RANK0]]
|
||||
// CHECK-SCF-DAG: %[[R20_GT_R1:.*]] = cmpi sgt, %[[R20]], %[[REDUCED_RANK1]]
|
||||
// CHECK-SCF-DAG: %[[MAX_RED_RANK:.*]] = select %[[R20_GT_R1]], %15, %[[REDUCED_RANK1]]
|
||||
// Case 1:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_1:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C1]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_1:.*]] = scf.if %[[MAX_RED_RANK_EQ_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// Equal shapes case:
|
||||
// CHECK-SCF-DAG: %[[EQ20:.*]] = shape.shape_eq %[[SHAPE_ARG2]], %[[SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EQ21:.*]] = shape.shape_eq %[[SHAPE_ARG2]], %[[SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[SHAPES_EQ:.*]] = and %[[EQ20]], %[[EQ21]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_EQ_SHAPES:.*]] = scf.if %[[SHAPES_EQ]]
|
||||
// CHECK-SCF-DAG: %[[S20:.*]] = shape.any %[[SHAPE_ARG2]], %[[SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[S201:.*]] = shape.any %[[S20]], %[[SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[N:.*]] = shape.num_elements %[[S201]]
|
||||
// CHECK-SCF-DAG: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]]
|
||||
// CHECK-SCF-DAG: %[[FLAT_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[FLAT_SHAPE]])
|
||||
// CHECK-SCF-DAG: %[[FLAT_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[FLAT_SHAPE]])
|
||||
// CHECK-SCF-DAG: %[[FLAT_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[FLAT_SHAPE]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[FLAT_ARG0]], %[[FLAT_ARG1]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[FLAT_ARG2]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 2:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_2:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C2]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_2:.*]] = scf.if %[[MAX_RED_RANK_EQ_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_2]]
|
||||
// Find maximum reduced rank.
|
||||
// CHECK-SCF-DAG: %[[REDUCED_SHAPES:.*]]:3 = chlo.minimum_broadcast_shapes %[[SHAPE_ARG2]], %[[SHAPE_ARG0]], %[[SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK0:.*]] = shape.rank %[[REDUCED_SHAPES]]#1
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK1:.*]] = shape.rank %[[REDUCED_SHAPES]]#2
|
||||
// CHECK-SCF-DAG: %[[REDUCED_RANK2:.*]] = shape.rank %[[REDUCED_SHAPES]]#0
|
||||
// CHECK-SCF-DAG: %[[R2_GT_R0:.*]] = cmpi sgt, %[[REDUCED_RANK2]], %[[REDUCED_RANK0]]
|
||||
// CHECK-SCF-DAG: %[[R20:.*]] = select %[[R2_GT_R0]], %[[REDUCED_RANK2]], %[[REDUCED_RANK0]]
|
||||
// CHECK-SCF-DAG: %[[R20_GT_R1:.*]] = cmpi sgt, %[[R20]], %[[REDUCED_RANK1]]
|
||||
// CHECK-SCF-DAG: %[[MAX_RED_RANK:.*]] = select %[[R20_GT_R1]], %[[R20]], %[[REDUCED_RANK1]]
|
||||
// Generic case 1:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_1:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C1]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_1:.*]] = scf.if %[[MAX_RED_RANK_EQ_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?xf32>, tensor<?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?xf32>, tensor<?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?xf32>, tensor<?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 3:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_3:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C3]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_3:.*]] = scf.if %[[MAX_RED_RANK_EQ_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_3]]
|
||||
// Generic case 2:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_2:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C2]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_2:.*]] = scf.if %[[MAX_RED_RANK_EQ_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_2]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?xf32>, tensor<?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?xf32>, tensor<?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 4:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_4:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C4]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_4:.*]] = scf.if %[[MAX_RED_RANK_EQ_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_4]]
|
||||
// Generic case 3:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_3:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C3]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_3:.*]] = scf.if %[[MAX_RED_RANK_EQ_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_3]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 5:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_5:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C5]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_5:.*]] = scf.if %[[MAX_RED_RANK_EQ_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_5]]
|
||||
// Generic case 4:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_4:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C4]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_4:.*]] = scf.if %[[MAX_RED_RANK_EQ_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_4]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?xf32>, tensor<?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 6:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_6:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C6]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_6:.*]] = scf.if %[[MAX_RED_RANK_EQ_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_6]]
|
||||
// Generic case 5:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_5:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C5]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_5:.*]] = scf.if %[[MAX_RED_RANK_EQ_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_5]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?xf32>, tensor<?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 7:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_7:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C7]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_7:.*]] = scf.if %[[MAX_RED_RANK_EQ_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_7]]
|
||||
// Generic case 6:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_6:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C6]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_6:.*]] = scf.if %[[MAX_RED_RANK_EQ_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_6]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Case 8:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_8:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C8]]
|
||||
// CHECK-SCF: assert %[[MAX_RED_RANK_EQ_8]], "Input for dynamic binary or n-ary op lowering was of a rank greater than 8"
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_7]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_6]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_5]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_4]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_3]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_2]]
|
||||
// Generic case 7:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_7:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C7]]
|
||||
// CHECK-SCF: %[[UNSHAPED_RES_7:.*]] = scf.if %[[MAX_RED_RANK_EQ_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_7]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: else
|
||||
// Generic case 8:
|
||||
// CHECK-SCF: %[[MAX_RED_RANK_EQ_8:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C8]]
|
||||
// CHECK-SCF: assert %[[MAX_RED_RANK_EQ_8]], "Input for dynamic binary or n-ary op lowering was of a rank greater than 8"
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_8]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]]
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]])
|
||||
// CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]])
|
||||
// CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor<?x?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor<?x?x?x?x?x?x?x?xf32>, tensor<?x?x?x?x?x?x?x?xf32>)
|
||||
// CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]]
|
||||
// CHECK-SCF: scf.yield %[[INNER_RES_]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_7]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_6]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_5]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_4]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_3]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_2]]
|
||||
// CHECK-SCF: scf.yield %[[UNSHAPED_RES_1]]
|
||||
// Reshape the result.
|
||||
// CHECK-SCF-DAG: %[[SHAPE_ARG0:.*]] = shape.shape_of %[[ARG0]]
|
||||
// CHECK-SCF-DAG: %[[SHAPE_ARG1:.*]] = shape.shape_of %[[ARG1]]
|
||||
// CHECK-SCF-DAG: %[[SHAPE_ARG2:.*]] = shape.shape_of %[[ARG2]]
|
||||
// CHECK-SCF-DAG: %[[RES_SHAPE:.*]] = shape.broadcast %[[SHAPE_ARG2]], %[[SHAPE_ARG0]], %[[SHAPE_ARG1]]
|
||||
// CHECK-SCF-DAG: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES_1]], %[[RES_SHAPE]])
|
||||
// CHECK-SCF-DAG: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES_EQ_SHAPES]], %[[RES_SHAPE]])
|
||||
// CHECK-SCF: return %[[RES]]
|
||||
|
||||
// -----
|
||||
|
|
Loading…
Reference in New Issue