Move code from helper struct to the only user.
We don't need the separate helper struct anymore, because it is now only used in one place. PiperOrigin-RevId: 366012639
This commit is contained in:
parent
4033a56750
commit
c8157ba4df
|
@ -206,180 +206,6 @@ struct ConvertUnrankedScalarDynamicBroadcastBinaryOp
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template <typename ChloOpTy>
|
|
||||||
struct ConvertUnrankedDynamicBroadcastOpHelper {
|
|
||||||
// Returns the dynamic result of checking the given value is effectively a
|
|
||||||
// scalar shape (i.e. the number of elements is 1).
|
|
||||||
static Value GreaterRankIsN(OpBuilder &builder, Location loc,
|
|
||||||
Value actual_rank, int targeted_rank) {
|
|
||||||
return builder.create<CmpIOp>(
|
|
||||||
loc, CmpIPredicate::eq, actual_rank,
|
|
||||||
builder.create<ConstantIndexOp>(loc, targeted_rank));
|
|
||||||
}
|
|
||||||
|
|
||||||
static scf::IfOp createIfOpForRankSpecializedBroadcastAndOp(
|
|
||||||
OpBuilder &builder, ChloOpTy op, Value actual_rank, int targeted_rank) {
|
|
||||||
// Create the if block to place the current specialized logic in.
|
|
||||||
Value greater_rank_is_n =
|
|
||||||
GreaterRankIsN(builder, op.getLoc(), actual_rank, targeted_rank);
|
|
||||||
return builder.create<scf::IfOp>(op.getLoc(), op.getResult().getType(),
|
|
||||||
greater_rank_is_n, true);
|
|
||||||
}
|
|
||||||
|
|
||||||
static Value createBroadcastToKnownRank(OpBuilder &builder, ChloOpTy op,
|
|
||||||
Value shape, int targeted_rank) {
|
|
||||||
auto loc = op.getLoc();
|
|
||||||
SmallVector<int64_t, 6> ranked_shape(targeted_rank, 1);
|
|
||||||
auto unknown_rank_extent_tensor_type = RankedTensorType::get(
|
|
||||||
{RankedTensorType::kDynamicSize}, builder.getIndexType());
|
|
||||||
auto known_rank_extent_tensor_type =
|
|
||||||
RankedTensorType::get({targeted_rank}, builder.getIndexType());
|
|
||||||
Value ranked_shape_val = builder.create<shape::ConstShapeOp>(
|
|
||||||
loc, known_rank_extent_tensor_type,
|
|
||||||
mlir::DenseIntElementsAttr::get(known_rank_extent_tensor_type,
|
|
||||||
ranked_shape));
|
|
||||||
Value extended_value = builder.create<shape::BroadcastOp>(
|
|
||||||
loc, unknown_rank_extent_tensor_type, shape, ranked_shape_val, nullptr);
|
|
||||||
return builder.create<tensor::CastOp>(loc, known_rank_extent_tensor_type,
|
|
||||||
extended_value);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create the if statement and code for a broadcasting op with a result of a
|
|
||||||
// given rank.
|
|
||||||
static void createRankSpecializedBroadcastAndOp(OpBuilder &if_builder,
|
|
||||||
ChloOpTy op,
|
|
||||||
ValueRange operands,
|
|
||||||
ValueRange operand_shapes,
|
|
||||||
int targeted_rank) {
|
|
||||||
auto loc = op.getLoc();
|
|
||||||
SmallVector<Value, 2> reshaped_operands;
|
|
||||||
|
|
||||||
auto dynamic_dimensions = llvm::SmallVector<int64_t, 6>(
|
|
||||||
targeted_rank, RankedTensorType::kDynamicSize);
|
|
||||||
|
|
||||||
for (auto it : llvm::zip(operands, operand_shapes)) {
|
|
||||||
Value operand, shape;
|
|
||||||
std::tie(operand, shape) = it;
|
|
||||||
// Handle shape broadcasting and inference.
|
|
||||||
Value extended_operand_casted =
|
|
||||||
createBroadcastToKnownRank(if_builder, op, shape, targeted_rank);
|
|
||||||
|
|
||||||
// 1. Reshape operands to the given rank (with the same number of
|
|
||||||
// elements)
|
|
||||||
// 2. Compute the ranked-broadcasted ChloOp (which will assert that the
|
|
||||||
// ops
|
|
||||||
// can be broadcasted and do the actual broadcasting)
|
|
||||||
// 3. Type erase the output back to unranked
|
|
||||||
auto reshaped_type = RankedTensorType::get(
|
|
||||||
dynamic_dimensions,
|
|
||||||
operand.getType().template dyn_cast<TensorType>().getElementType());
|
|
||||||
Value reshaped_operand = if_builder.create<mhlo::DynamicReshapeOp>(
|
|
||||||
loc, reshaped_type, operand, extended_operand_casted);
|
|
||||||
reshaped_operands.push_back(reshaped_operand);
|
|
||||||
}
|
|
||||||
auto result_element_type = op.getResult()
|
|
||||||
.getType()
|
|
||||||
.template dyn_cast<TensorType>()
|
|
||||||
.getElementType();
|
|
||||||
auto result_type =
|
|
||||||
RankedTensorType::get(dynamic_dimensions, result_element_type);
|
|
||||||
Value result = if_builder.create<ChloOpTy>(
|
|
||||||
loc, ArrayRef<Type>{result_type}, reshaped_operands, op->getAttrs());
|
|
||||||
Value reshaped_result = if_builder.create<tensor::CastOp>(
|
|
||||||
loc, UnrankedTensorType::get(result_element_type), result);
|
|
||||||
if_builder.create<scf::YieldOp>(loc, reshaped_result);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Iterates over the desired ranks to be specialized and generates the code
|
|
||||||
// snippet for each case.
|
|
||||||
static Value HandleBroadcastAndOp(OpBuilder &rewriter, ChloOpTy op,
|
|
||||||
ValueRange operands) {
|
|
||||||
auto loc = op.getLoc();
|
|
||||||
|
|
||||||
// Get the minimum broadcast shapes of the operands.
|
|
||||||
SmallVector<Value> shapes;
|
|
||||||
shapes.reserve(operands.size());
|
|
||||||
auto extent_tensor_type = RankedTensorType::get({ShapedType::kDynamicSize},
|
|
||||||
rewriter.getIndexType());
|
|
||||||
for (Value operand : operands) {
|
|
||||||
Value shape =
|
|
||||||
rewriter.create<shape::ShapeOfOp>(loc, extent_tensor_type, operand);
|
|
||||||
shapes.push_back(shape);
|
|
||||||
}
|
|
||||||
auto broadcast_shape = rewriter.create<shape::BroadcastOp>(
|
|
||||||
loc, extent_tensor_type, shapes, nullptr);
|
|
||||||
SmallVector<Type> result_types(shapes.size(), extent_tensor_type);
|
|
||||||
auto reduced_shapes =
|
|
||||||
rewriter
|
|
||||||
.create<chlo::MinimumBroadcastShapesOp>(loc, result_types, shapes)
|
|
||||||
.results();
|
|
||||||
SmallVector<Value> reshaped_operands;
|
|
||||||
reshaped_operands.reserve(operands.size());
|
|
||||||
for (auto it : llvm::zip(operands, reduced_shapes)) {
|
|
||||||
Value operand;
|
|
||||||
Value reduced_shape;
|
|
||||||
std::tie(operand, reduced_shape) = it;
|
|
||||||
auto reshaped_operand = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
||||||
loc, operand.getType(), operand, reduced_shape);
|
|
||||||
reshaped_operands.push_back(reshaped_operand);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find the largest rank of the operands.
|
|
||||||
Value greater_rank;
|
|
||||||
for (Value shape : reduced_shapes) {
|
|
||||||
Value rank =
|
|
||||||
rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), shape);
|
|
||||||
if (!greater_rank) {
|
|
||||||
greater_rank = rank;
|
|
||||||
} else {
|
|
||||||
Value greater_rank_compare = rewriter.create<CmpIOp>(
|
|
||||||
loc, CmpIPredicate::sgt, greater_rank, rank);
|
|
||||||
greater_rank = rewriter.create<SelectOp>(loc, greater_rank_compare,
|
|
||||||
greater_rank, rank);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Generate a list of nested if/else statements to handle rank
|
|
||||||
// specializations from 1 to `kMaxRankSpecialization`.
|
|
||||||
scf::IfOp if_op = createIfOpForRankSpecializedBroadcastAndOp(
|
|
||||||
rewriter, op, greater_rank, 1);
|
|
||||||
OpBuilder if_builder = if_op.getThenBodyBuilder(rewriter.getListener());
|
|
||||||
createRankSpecializedBroadcastAndOp(if_builder, op, reshaped_operands,
|
|
||||||
reduced_shapes, 1);
|
|
||||||
|
|
||||||
// Put each subsequent rank specialization inside the else statement of the
|
|
||||||
// previous one.
|
|
||||||
OpBuilder else_builder = if_op.getElseBodyBuilder(rewriter.getListener());
|
|
||||||
constexpr int kMaxRankSpecialization = 5;
|
|
||||||
for (int i = 2; i < kMaxRankSpecialization; i++) {
|
|
||||||
auto inner_if = createIfOpForRankSpecializedBroadcastAndOp(
|
|
||||||
else_builder, op, greater_rank, i);
|
|
||||||
if_builder = inner_if.getThenBodyBuilder(rewriter.getListener());
|
|
||||||
createRankSpecializedBroadcastAndOp(if_builder, op, reshaped_operands,
|
|
||||||
reduced_shapes, i);
|
|
||||||
else_builder.create<scf::YieldOp>(loc, inner_if.getResult(0));
|
|
||||||
else_builder = inner_if.getElseBodyBuilder(rewriter.getListener());
|
|
||||||
}
|
|
||||||
// Fire an assertion if none of the rank specializations applied (one of
|
|
||||||
// the ranks was greater than `kMaxRankSpecialization`).
|
|
||||||
else_builder.create<AssertOp>(
|
|
||||||
loc,
|
|
||||||
GreaterRankIsN(else_builder, op.getLoc(), greater_rank,
|
|
||||||
kMaxRankSpecialization),
|
|
||||||
"Input for dynamic binary op lowering was of a rank greater than " +
|
|
||||||
std::to_string(kMaxRankSpecialization));
|
|
||||||
// Add the rank 5 specialization to the innermost else block.
|
|
||||||
createRankSpecializedBroadcastAndOp(else_builder, op, reshaped_operands,
|
|
||||||
reduced_shapes, kMaxRankSpecialization);
|
|
||||||
|
|
||||||
// Return the reshaped result of the outermost if statement.
|
|
||||||
auto result = if_op.getResult(0);
|
|
||||||
auto reshaped_result = rewriter.create<mhlo::DynamicReshapeOp>(
|
|
||||||
loc, result.getType(), result, broadcast_shape);
|
|
||||||
return reshaped_result;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Handles lowering of the following pattern to patterns that will be further
|
// Handles lowering of the following pattern to patterns that will be further
|
||||||
// matched by other patterns until they result in LHLO:
|
// matched by other patterns until they result in LHLO:
|
||||||
// %result = "chlo.op"(%op0, %op1, ...) : (<*xTy>, <*xTy>, ...) -> <*xTy>
|
// %result = "chlo.op"(%op0, %op1, ...) : (<*xTy>, <*xTy>, ...) -> <*xTy>
|
||||||
|
@ -498,8 +324,7 @@ struct ConvertUnrankedDynamicBroadcastNaryOp
|
||||||
if_eq_shapes_op.getElseBodyBuilder(rewriter.getListener());
|
if_eq_shapes_op.getElseBodyBuilder(rewriter.getListener());
|
||||||
if_neq_shapes_builder.create<scf::YieldOp>(
|
if_neq_shapes_builder.create<scf::YieldOp>(
|
||||||
loc,
|
loc,
|
||||||
ConvertUnrankedDynamicBroadcastOpHelper<ChloOpTy>::HandleBroadcastAndOp(
|
HandleBroadcastAndOp(if_neq_shapes_builder, op, transformed_operands));
|
||||||
if_neq_shapes_builder, op, transformed_operands));
|
|
||||||
|
|
||||||
rewriter.replaceOp(op, {if_op.getResult(0)});
|
rewriter.replaceOp(op, {if_op.getResult(0)});
|
||||||
return success();
|
return success();
|
||||||
|
@ -529,6 +354,177 @@ struct ConvertUnrankedDynamicBroadcastNaryOp
|
||||||
return builder.create<mhlo::DynamicReshapeOp>(loc, result_type, value,
|
return builder.create<mhlo::DynamicReshapeOp>(loc, result_type, value,
|
||||||
broadcast_shape);
|
broadcast_shape);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Returns the dynamic result of checking the given value is effectively a
|
||||||
|
// scalar shape (i.e. the number of elements is 1).
|
||||||
|
Value GreaterRankIsN(OpBuilder &builder, Location loc, Value actual_rank,
|
||||||
|
int targeted_rank) const {
|
||||||
|
return builder.create<CmpIOp>(
|
||||||
|
loc, CmpIPredicate::eq, actual_rank,
|
||||||
|
builder.create<ConstantIndexOp>(loc, targeted_rank));
|
||||||
|
}
|
||||||
|
|
||||||
|
scf::IfOp createIfOpForRankSpecializedBroadcastAndOp(
|
||||||
|
OpBuilder &builder, ChloOpTy op, Value actual_rank,
|
||||||
|
int targeted_rank) const {
|
||||||
|
// Create the if block to place the current specialized logic in.
|
||||||
|
Value greater_rank_is_n =
|
||||||
|
GreaterRankIsN(builder, op.getLoc(), actual_rank, targeted_rank);
|
||||||
|
return builder.create<scf::IfOp>(op.getLoc(), op.getResult().getType(),
|
||||||
|
greater_rank_is_n, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
Value createBroadcastToKnownRank(OpBuilder &builder, ChloOpTy op, Value shape,
|
||||||
|
int targeted_rank) const {
|
||||||
|
auto loc = op.getLoc();
|
||||||
|
SmallVector<int64_t, 6> ranked_shape(targeted_rank, 1);
|
||||||
|
auto unknown_rank_extent_tensor_type = RankedTensorType::get(
|
||||||
|
{RankedTensorType::kDynamicSize}, builder.getIndexType());
|
||||||
|
auto known_rank_extent_tensor_type =
|
||||||
|
RankedTensorType::get({targeted_rank}, builder.getIndexType());
|
||||||
|
Value ranked_shape_val = builder.create<shape::ConstShapeOp>(
|
||||||
|
loc, known_rank_extent_tensor_type,
|
||||||
|
mlir::DenseIntElementsAttr::get(known_rank_extent_tensor_type,
|
||||||
|
ranked_shape));
|
||||||
|
Value extended_value = builder.create<shape::BroadcastOp>(
|
||||||
|
loc, unknown_rank_extent_tensor_type, shape, ranked_shape_val, nullptr);
|
||||||
|
return builder.create<tensor::CastOp>(loc, known_rank_extent_tensor_type,
|
||||||
|
extended_value);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create the if statement and code for a broadcasting op with a result of a
|
||||||
|
// given rank.
|
||||||
|
void createRankSpecializedBroadcastAndOp(OpBuilder &if_builder, ChloOpTy op,
|
||||||
|
ValueRange operands,
|
||||||
|
ValueRange operand_shapes,
|
||||||
|
int targeted_rank) const {
|
||||||
|
auto loc = op.getLoc();
|
||||||
|
SmallVector<Value, 2> reshaped_operands;
|
||||||
|
|
||||||
|
auto dynamic_dimensions = llvm::SmallVector<int64_t, 6>(
|
||||||
|
targeted_rank, RankedTensorType::kDynamicSize);
|
||||||
|
|
||||||
|
for (auto it : llvm::zip(operands, operand_shapes)) {
|
||||||
|
Value operand, shape;
|
||||||
|
std::tie(operand, shape) = it;
|
||||||
|
// Handle shape broadcasting and inference.
|
||||||
|
Value extended_operand_casted =
|
||||||
|
createBroadcastToKnownRank(if_builder, op, shape, targeted_rank);
|
||||||
|
|
||||||
|
// 1. Reshape operands to the given rank (with the same number of
|
||||||
|
// elements)
|
||||||
|
// 2. Compute the ranked-broadcasted ChloOp (which will assert that the
|
||||||
|
// ops
|
||||||
|
// can be broadcasted and do the actual broadcasting)
|
||||||
|
// 3. Type erase the output back to unranked
|
||||||
|
auto reshaped_type = RankedTensorType::get(
|
||||||
|
dynamic_dimensions,
|
||||||
|
operand.getType().template dyn_cast<TensorType>().getElementType());
|
||||||
|
Value reshaped_operand = if_builder.create<mhlo::DynamicReshapeOp>(
|
||||||
|
loc, reshaped_type, operand, extended_operand_casted);
|
||||||
|
reshaped_operands.push_back(reshaped_operand);
|
||||||
|
}
|
||||||
|
auto result_element_type = op.getResult()
|
||||||
|
.getType()
|
||||||
|
.template dyn_cast<TensorType>()
|
||||||
|
.getElementType();
|
||||||
|
auto result_type =
|
||||||
|
RankedTensorType::get(dynamic_dimensions, result_element_type);
|
||||||
|
Value result = if_builder.create<ChloOpTy>(
|
||||||
|
loc, ArrayRef<Type>{result_type}, reshaped_operands, op->getAttrs());
|
||||||
|
Value reshaped_result = if_builder.create<tensor::CastOp>(
|
||||||
|
loc, UnrankedTensorType::get(result_element_type), result);
|
||||||
|
if_builder.create<scf::YieldOp>(loc, reshaped_result);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Iterates over the desired ranks to be specialized and generates the code
|
||||||
|
// snippet for each case.
|
||||||
|
Value HandleBroadcastAndOp(OpBuilder &rewriter, ChloOpTy op,
|
||||||
|
ValueRange operands) const {
|
||||||
|
auto loc = op.getLoc();
|
||||||
|
|
||||||
|
// Get the minimum broadcast shapes of the operands.
|
||||||
|
SmallVector<Value> shapes;
|
||||||
|
shapes.reserve(operands.size());
|
||||||
|
auto extent_tensor_type = RankedTensorType::get({ShapedType::kDynamicSize},
|
||||||
|
rewriter.getIndexType());
|
||||||
|
for (Value operand : operands) {
|
||||||
|
Value shape =
|
||||||
|
rewriter.create<shape::ShapeOfOp>(loc, extent_tensor_type, operand);
|
||||||
|
shapes.push_back(shape);
|
||||||
|
}
|
||||||
|
auto broadcast_shape = rewriter.create<shape::BroadcastOp>(
|
||||||
|
loc, extent_tensor_type, shapes, nullptr);
|
||||||
|
SmallVector<Type> result_types(shapes.size(), extent_tensor_type);
|
||||||
|
auto reduced_shapes =
|
||||||
|
rewriter
|
||||||
|
.create<chlo::MinimumBroadcastShapesOp>(loc, result_types, shapes)
|
||||||
|
.results();
|
||||||
|
SmallVector<Value> reshaped_operands;
|
||||||
|
reshaped_operands.reserve(operands.size());
|
||||||
|
for (auto it : llvm::zip(operands, reduced_shapes)) {
|
||||||
|
Value operand;
|
||||||
|
Value reduced_shape;
|
||||||
|
std::tie(operand, reduced_shape) = it;
|
||||||
|
auto reshaped_operand = rewriter.create<mhlo::DynamicReshapeOp>(
|
||||||
|
loc, operand.getType(), operand, reduced_shape);
|
||||||
|
reshaped_operands.push_back(reshaped_operand);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the largest rank of the operands.
|
||||||
|
Value greater_rank;
|
||||||
|
for (Value shape : reduced_shapes) {
|
||||||
|
Value rank =
|
||||||
|
rewriter.create<shape::RankOp>(loc, rewriter.getIndexType(), shape);
|
||||||
|
if (!greater_rank) {
|
||||||
|
greater_rank = rank;
|
||||||
|
} else {
|
||||||
|
Value greater_rank_compare = rewriter.create<CmpIOp>(
|
||||||
|
loc, CmpIPredicate::sgt, greater_rank, rank);
|
||||||
|
greater_rank = rewriter.create<SelectOp>(loc, greater_rank_compare,
|
||||||
|
greater_rank, rank);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generate a list of nested if/else statements to handle rank
|
||||||
|
// specializations from 1 to `kMaxRankSpecialization`.
|
||||||
|
scf::IfOp if_op = createIfOpForRankSpecializedBroadcastAndOp(
|
||||||
|
rewriter, op, greater_rank, 1);
|
||||||
|
OpBuilder if_builder = if_op.getThenBodyBuilder(rewriter.getListener());
|
||||||
|
createRankSpecializedBroadcastAndOp(if_builder, op, reshaped_operands,
|
||||||
|
reduced_shapes, 1);
|
||||||
|
|
||||||
|
// Put each subsequent rank specialization inside the else statement of the
|
||||||
|
// previous one.
|
||||||
|
OpBuilder else_builder = if_op.getElseBodyBuilder(rewriter.getListener());
|
||||||
|
constexpr int kMaxRankSpecialization = 5;
|
||||||
|
for (int i = 2; i < kMaxRankSpecialization; i++) {
|
||||||
|
auto inner_if = createIfOpForRankSpecializedBroadcastAndOp(
|
||||||
|
else_builder, op, greater_rank, i);
|
||||||
|
if_builder = inner_if.getThenBodyBuilder(rewriter.getListener());
|
||||||
|
createRankSpecializedBroadcastAndOp(if_builder, op, reshaped_operands,
|
||||||
|
reduced_shapes, i);
|
||||||
|
else_builder.create<scf::YieldOp>(loc, inner_if.getResult(0));
|
||||||
|
else_builder = inner_if.getElseBodyBuilder(rewriter.getListener());
|
||||||
|
}
|
||||||
|
// Fire an assertion if none of the rank specializations applied (one of
|
||||||
|
// the ranks was greater than `kMaxRankSpecialization`).
|
||||||
|
else_builder.create<AssertOp>(
|
||||||
|
loc,
|
||||||
|
GreaterRankIsN(else_builder, op.getLoc(), greater_rank,
|
||||||
|
kMaxRankSpecialization),
|
||||||
|
"Input for dynamic binary op lowering was of a rank greater than " +
|
||||||
|
std::to_string(kMaxRankSpecialization));
|
||||||
|
// Add the rank 5 specialization to the innermost else block.
|
||||||
|
createRankSpecializedBroadcastAndOp(else_builder, op, reshaped_operands,
|
||||||
|
reduced_shapes, kMaxRankSpecialization);
|
||||||
|
|
||||||
|
// Return the reshaped result of the outermost if statement.
|
||||||
|
auto result = if_op.getResult(0);
|
||||||
|
auto reshaped_result = rewriter.create<mhlo::DynamicReshapeOp>(
|
||||||
|
loc, result.getType(), result, broadcast_shape);
|
||||||
|
return reshaped_result;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
struct TransformUnrankedHloPass
|
struct TransformUnrankedHloPass
|
||||||
|
|
Loading…
Reference in New Issue