Implement InferShapedTypeOpInterface and use inferReturnTypes for mhlo.imag and mhlo.real
This makes the lhlo lowering work with dynamic shapes. PiperOrigin-RevId: 334553472
This commit is contained in:
parent
39389587d2
commit
c8919f8419
|
@ -193,12 +193,9 @@ def HLO_Expm1Op: HLO_UnaryElementwiseOp<"exponential_minus_one",
|
|||
def HLO_FloorOp: HLO_UnaryElementwiseOp<"floor",
|
||||
[NoSideEffect, SameOperandsAndResultType], HLO_FpTensor>, BASE_HLO_FloorOp;
|
||||
|
||||
def HLO_ImagOp: HLO_Op<
|
||||
"imag", [NoSideEffect, SameOperandsAndResultShape]>, BASE_HLO_ImagOp {
|
||||
let builders = [OpBuilder<
|
||||
"OpBuilder &, OperationState &tblgen_state, Value val">];
|
||||
|
||||
let arguments = (ins HLO_ComplexTensor);
|
||||
def HLO_ImagOp: HLO_UnaryElementwiseOp<"imag",
|
||||
[NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>],
|
||||
HLO_ComplexTensor>, BASE_HLO_ImagOp {
|
||||
let results = (outs HLO_FpTensor);
|
||||
let hasFolder = 1;
|
||||
}
|
||||
|
@ -237,12 +234,9 @@ def HLO_PopulationCountOp: HLO_UnaryElementwiseOp<"popcnt",
|
|||
[NoSideEffect, SameOperandsAndResultType], HLO_IntTensor>,
|
||||
BASE_HLO_PopulationCountOp;
|
||||
|
||||
def HLO_RealOp: HLO_Op<
|
||||
"real", [NoSideEffect, SameOperandsAndResultShape]>, BASE_HLO_RealOp {
|
||||
let builders = [OpBuilder<
|
||||
"OpBuilder &, OperationState &tblgen_state, Value val">];
|
||||
|
||||
let arguments = (ins HLO_ComplexTensor);
|
||||
def HLO_RealOp: HLO_UnaryElementwiseOp<"real",
|
||||
[NoSideEffect, DeclareOpInterfaceMethods<InferTypeOpInterface>],
|
||||
HLO_ComplexTensor>, BASE_HLO_RealOp {
|
||||
let results = (outs HLO_FpTensor);
|
||||
let hasFolder = 1;
|
||||
}
|
||||
|
|
|
@ -932,8 +932,11 @@ Type CreateRealType(Type type) {
|
|||
}
|
||||
} // namespace
|
||||
|
||||
void ImagOp::build(OpBuilder& builder, OperationState& state, Value val) {
|
||||
build(builder, state, CreateRealType(val.getType()), val);
|
||||
LogicalResult ImagOp::inferReturnTypes(
|
||||
MLIRContext*, Optional<Location>, ValueRange operands, DictionaryAttr,
|
||||
RegionRange, SmallVectorImpl<Type>& inferredReturnTypes) {
|
||||
inferredReturnTypes.push_back(CreateRealType(operands[0].getType()));
|
||||
return success();
|
||||
}
|
||||
|
||||
OpFoldResult ImagOp::fold(ArrayRef<Attribute> operands) {
|
||||
|
@ -945,8 +948,11 @@ OpFoldResult ImagOp::fold(ArrayRef<Attribute> operands) {
|
|||
return {};
|
||||
}
|
||||
|
||||
void RealOp::build(OpBuilder& builder, OperationState& state, Value val) {
|
||||
build(builder, state, CreateRealType(val.getType()), val);
|
||||
LogicalResult RealOp::inferReturnTypes(
|
||||
MLIRContext*, Optional<Location>, ValueRange operands, DictionaryAttr,
|
||||
RegionRange, SmallVectorImpl<Type>& inferredReturnTypes) {
|
||||
inferredReturnTypes.push_back(CreateRealType(operands[0].getType()));
|
||||
return success();
|
||||
}
|
||||
|
||||
OpFoldResult RealOp::fold(ArrayRef<Attribute> operands) {
|
||||
|
|
|
@ -248,6 +248,18 @@ func @real(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
|
|||
|
||||
// -----
|
||||
|
||||
// BOTH-LABEL: func @real_dyn
|
||||
func @real_dyn(%operand: memref<?xcomplex<f32>>, %result: memref<?xf32>) {
|
||||
%tensor_operand = tensor_load %operand : memref<?xcomplex<f32>>
|
||||
%tensor_result = "mhlo.real"(%tensor_operand)
|
||||
: (tensor<?xcomplex<f32>>) -> tensor<?xf32>
|
||||
// BOTH: "lmhlo.real"(%{{.*}}, %{{.*}})
|
||||
tensor_store %tensor_result, %result : memref<?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// BOTH-LABEL: func @imag
|
||||
func @imag(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
|
||||
%tensor_operand = tensor_load %operand : memref<2x2xcomplex<f32>>
|
||||
|
@ -260,6 +272,18 @@ func @imag(%operand: memref<2x2xcomplex<f32>>, %result: memref<2x2xf32>) {
|
|||
|
||||
// -----
|
||||
|
||||
// BOTH-LABEL: func @imag_dyn
|
||||
func @imag_dyn(%operand: memref<?xcomplex<f32>>, %result: memref<?xf32>) {
|
||||
%tensor_operand = tensor_load %operand : memref<?xcomplex<f32>>
|
||||
%tensor_result = "mhlo.imag"(%tensor_operand)
|
||||
: (tensor<?xcomplex<f32>>) -> tensor<?xf32>
|
||||
// BOTH: "lmhlo.imag"(%{{.*}}, %{{.*}})
|
||||
tensor_store %tensor_result, %result : memref<?xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// BOTH-LABEL: func @iota
|
||||
func @iota(%result: memref<10xi32>) {
|
||||
%tensor_result = "mhlo.iota"()
|
||||
|
|
Loading…
Reference in New Issue