[MLIR][CHLO] Add `chlo.digamma` and lowering to MHLO

PiperOrigin-RevId: 355122765
This commit is contained in:
A. Unique TensorFlower 2021-02-02 02:09:04 -08:00 committed by TensorFlow MLIR Team
parent c2115f56c7
commit f40ccc5b4b
3 changed files with 372 additions and 1 deletions

View File

@ -555,6 +555,15 @@ def HLOClient_ConstantLikeOp : HLOClient_Op<"constant_like",
let hasCanonicalizer = 1; let hasCanonicalizer = 1;
} }
def HLOClient_DigammaOp : HLOClient_UnaryElementwiseOp<"digamma",
[SameOperandsAndResultType], HLO_FpTensor, HLO_FpTensor> {
let summary = "Digamma function";
let description = [{
Returns `Digamma(operand)` element-wise.
}];
}
def HLOClient_ErfOp : HLOClient_UnaryElementwiseOp<"erf", def HLOClient_ErfOp : HLOClient_UnaryElementwiseOp<"erf",
[SameOperandsAndResultType], HLO_FpTensor, HLO_FpTensor> { [SameOperandsAndResultType], HLO_FpTensor, HLO_FpTensor> {
let summary = "Erfc operator"; let summary = "Erfc operator";

View File

@ -625,6 +625,119 @@ Value MaterializeLgamma(ConversionPatternRewriter &rewriter, Location loc,
lgamma); lgamma);
} }
// Compute the Digamma function using Lanczos' approximation from "A Precision
// Approximation of the Gamma Function". SIAM Journal on Numerical Analysis
// series B. Vol. 1:
// digamma(z + 1) = log(t(z)) + a'(z) / a(z) - kLanczosGamma / t(z)
// with t(z) = z + kLanczosGamma + 1/2
// a(z) = kBaseLanczosCoeff
// + sum(k = 1, n, kLanczosCoefficients[i] / (z + k))
// a'(z) = - sum(k = 1, n, kLanczosCoefficients[i] / (z + k) / (z + k))
Value MaterializeDigamma(ConversionPatternRewriter &rewriter, Location loc,
Value x) {
// If the input is less than 0.5 use Euler's reflection formula.
// digamma(x) = digamma(1 - x) - pi * cot(pi * x)
// Let z be
// z = -x if x < 1/2
// z = x - 1 otheriwse
const StringAttr kLT = rewriter.getStringAttr(
mhlo::stringifyComparisonDirection(mhlo::ComparisonDirection::LT));
Value half = getConstantLike(rewriter, loc, 0.5, x);
Value need_to_reflect = rewriter.create<mhlo::CompareOp>(loc, x, half, kLT);
Value neg_x = rewriter.create<mhlo::NegOp>(loc, x);
Value one = getConstantLike(rewriter, loc, 1, x);
Value x_sub_one = rewriter.create<mhlo::SubOp>(loc, x, one);
Value z =
rewriter.create<mhlo::SelectOp>(loc, need_to_reflect, neg_x, x_sub_one);
// Materialize
// a(z) = kBaseLanczosCoeff
// + sum(k = 1, n, kLanczosCoefficients[i] / (z + k))
// a'(z) = - sum(k = 1, n, kLanczosCoefficients[i] / (z + k) / (z + k))
Value zero = getConstantLike(rewriter, loc, 0.0, x);
Value a = getConstantLike(rewriter, loc, kBaseLanczosCoeff, x);
Value a_prime = zero;
for (int i = 0, end = kLanczosCoefficients.size(); i < end; ++i) {
Value coeff = getConstantLike(rewriter, loc, kLanczosCoefficients[i], x);
Value one_based_index = getConstantLike(rewriter, loc, i + 1, x);
Value z_term = rewriter.create<mhlo::AddOp>(loc, z, one_based_index);
a_prime = rewriter.create<mhlo::SubOp>(
loc, a_prime,
rewriter.create<mhlo::DivOp>(
loc, coeff, rewriter.create<mhlo::MulOp>(loc, z_term, z_term)));
a = rewriter.create<mhlo::AddOp>(
loc, a, rewriter.create<mhlo::DivOp>(loc, coeff, z_term));
}
// To improve accuracy on platforms with less-precise log implementations,
// compute log(kLanczosGamma + 1/2) at compile time and use log1p on the
// device.
// Materialize as
// log(t) = log(kLanczosGamma + 1/2 + z)
// = log(kLanczosGamma + 1/2) + log1p(z / (kLanczosGamma + 1/2)).
Value lanczos_plus_half =
getConstantLike(rewriter, loc, kLanczosGamma + 0.5, x);
Value t = rewriter.create<mhlo::AddOp>(loc, lanczos_plus_half, z);
Value log_term =
getConstantLike(rewriter, loc, std::log(kLanczosGamma + 0.5), x);
Value log1p_term = rewriter.create<mhlo::Log1pOp>(
loc, rewriter.create<mhlo::DivOp>(loc, z, lanczos_plus_half));
Value log_t = rewriter.create<mhlo::AddOp>(loc, log_term, log1p_term);
// Materialize the final result (modulo reflection) as
// digamma(z + 1) = log(t(z)) + a'(z) / a(z) - kLanczosGamma / t(z).
Value a_prime_div_a = rewriter.create<mhlo::DivOp>(loc, a_prime, a);
Value lanczos_gamma_div_t = rewriter.create<mhlo::DivOp>(
loc, getConstantLike(rewriter, loc, kLanczosGamma, x), t);
Value digamma = rewriter.create<mhlo::SubOp>(
loc, rewriter.create<mhlo::AddOp>(loc, log_t, a_prime_div_a),
lanczos_gamma_div_t);
// We need to be careful how we compute cot(pi * input) below: For
// near-integral arguments, pi * input can lose precision.
//
// Input is already known to be less than 0.5 (otherwise we don't have to
// reflect). We shift values smaller than -0.5 into the range [-0.5, 0.5] to
// increase precision of pi * x and the resulting cotangent.
Value reduced_x = rewriter.create<mhlo::AddOp>(
loc, x,
rewriter.create<mhlo::AbsOp>(
loc, rewriter.create<mhlo::FloorOp>(
loc, rewriter.create<mhlo::AddOp>(
loc, x, getConstantLike(rewriter, loc, 0.5, x)))));
// Materialize reflection for inputs less than 0.5 as
// digamma(x) = digamma(1 - x) - pi * cot(pi * x)
// = digamma(1 - x) - pi * cos(pi * x) / sin(pi * x)
Value pi = getConstantLike(rewriter, loc, M_PI, x);
Value pi_mul_reduced_x = rewriter.create<mhlo::MulOp>(loc, pi, reduced_x);
Value cos = rewriter.create<mhlo::CosOp>(loc, pi_mul_reduced_x);
Value sin = rewriter.create<mhlo::SinOp>(loc, pi_mul_reduced_x);
Value reflection = rewriter.create<mhlo::SubOp>(
loc, digamma,
rewriter.create<mhlo::DivOp>(
loc, rewriter.create<mhlo::MulOp>(loc, pi, cos), sin));
// Select whether or not to rely on the reflection.
digamma = rewriter.create<mhlo::SelectOp>(loc, need_to_reflect, reflection,
digamma);
// Digamma has poles at negative integers and zero; return nan for those.
const StringAttr kLE = rewriter.getStringAttr(
mhlo::stringifyComparisonDirection(mhlo::ComparisonDirection::LE));
Value is_le_zero = rewriter.create<mhlo::CompareOp>(loc, x, zero, kLE);
const StringAttr kEQ = rewriter.getStringAttr(
mhlo::stringifyComparisonDirection(mhlo::ComparisonDirection::EQ));
Value is_int = rewriter.create<mhlo::CompareOp>(
loc, x, rewriter.create<mhlo::FloorOp>(loc, x), kEQ);
Value is_pole = rewriter.create<mhlo::AndOp>(loc, is_le_zero, is_int);
return rewriter.create<mhlo::SelectOp>(
loc, is_pole,
getConstantLike(rewriter, loc, std::numeric_limits<double>::quiet_NaN(),
x),
digamma);
}
struct ConvertLgammaOp : public OpConversionPattern<LgammaOp> { struct ConvertLgammaOp : public OpConversionPattern<LgammaOp> {
using OpConversionPattern<LgammaOp>::OpConversionPattern; using OpConversionPattern<LgammaOp>::OpConversionPattern;
LogicalResult matchAndRewrite( LogicalResult matchAndRewrite(
@ -639,6 +752,20 @@ struct ConvertLgammaOp : public OpConversionPattern<LgammaOp> {
} }
}; };
struct ConvertDigammaOp : public OpConversionPattern<DigammaOp> {
using OpConversionPattern<DigammaOp>::OpConversionPattern;
LogicalResult matchAndRewrite(
DigammaOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
DigammaOp::Adaptor transformed(operands);
FloatType min_precision_ty = rewriter.getF32Type();
rewriter.replaceOp(
op, MaterializeWithUpcast(rewriter, op.getLoc(), transformed.operand(),
min_precision_ty, &MaterializeDigamma));
return success();
}
};
// Converts binary ops that statically are determined to not broadcast directly // Converts binary ops that statically are determined to not broadcast directly
// to the corresponding mhlo non-broadcasting op. // to the corresponding mhlo non-broadcasting op.
template <typename ChloOpTy, typename HloOpTy, typename Adaptor> template <typename ChloOpTy, typename HloOpTy, typename Adaptor>
@ -790,8 +917,13 @@ void PopulateLegalizeChloToHloPatterns(MLIRContext *context,
context, patterns, 5); context, patterns, 5);
// Other patterns. // Other patterns.
patterns->insert<ConvertConstantLikeOp, ConvertErfOp, ConvertErfcOp, // clang-format off
patterns->insert<ConvertConstantLikeOp,
ConvertDigammaOp,
ConvertErfOp,
ConvertErfcOp,
ConvertLgammaOp>(context); ConvertLgammaOp>(context);
// clang-format on
} }
} // namespace chlo } // namespace chlo

View File

@ -875,3 +875,233 @@ func @lgamma_f16(%arg : tensor<f16>) -> tensor<f16> {
%1 = chlo.lgamma %arg : tensor<f16> -> tensor<f16> %1 = chlo.lgamma %arg : tensor<f16> -> tensor<f16>
return %1 : tensor<f16> return %1 : tensor<f16>
} }
// CHECK-LABEL: @digamma_f64
// CHECK-SAME: (%[[ARG:.*]]: tensor<f64>)
func @digamma_f64(%arg : tensor<f64>) -> tensor<f64> {
// CHECK: %[[TMP_0:.*]] = mhlo.constant dense<5.000000e-01>
// CHECK: %[[TMP_1:.*]] = "mhlo.compare"(%arg0, %[[TMP_0]]) {comparison_direction = "LT"}
// CHECK: %[[TMP_2:.*]] = "mhlo.negate"(%arg0)
// CHECK: %[[TMP_3:.*]] = mhlo.constant dense<1.000000e+00>
// CHECK: %[[TMP_4:.*]] = mhlo.subtract %arg0, %[[TMP_3]]
// CHECK: %[[TMP_5:.*]] = "mhlo.select"(%[[TMP_1]], %[[TMP_2]], %[[TMP_4]])
// CHECK: %[[TMP_6:.*]] = mhlo.constant dense<0.000000e+00>
// CHECK: %[[TMP_7:.*]] = mhlo.constant dense<0.99999999999980993>
// CHECK: %[[TMP_8:.*]] = mhlo.constant dense<676.5203681218851>
// CHECK: %[[TMP_9:.*]] = mhlo.constant dense<1.000000e+00>
// CHECK: %[[TMP_10:.*]] = mhlo.add %[[TMP_5]], %[[TMP_9]]
// CHECK: %[[TMP_11:.*]] = mhlo.multiply %[[TMP_10]], %[[TMP_10]]
// CHECK: %[[TMP_12:.*]] = mhlo.divide %[[TMP_8]], %[[TMP_11]]
// CHECK: %[[TMP_13:.*]] = mhlo.subtract %[[TMP_6]], %[[TMP_12]]
// CHECK: %[[TMP_14:.*]] = mhlo.divide %[[TMP_8]], %[[TMP_10]]
// CHECK: %[[TMP_15:.*]] = mhlo.add %[[TMP_7]], %[[TMP_14]]
// CHECK: %[[TMP_16:.*]] = mhlo.constant dense<-1259.1392167224028>
// CHECK: %[[TMP_17:.*]] = mhlo.constant dense<2.000000e+00>
// CHECK: %[[TMP_18:.*]] = mhlo.add %[[TMP_5]], %[[TMP_17]]
// CHECK: %[[TMP_19:.*]] = mhlo.multiply %[[TMP_18]], %[[TMP_18]]
// CHECK: %[[TMP_20:.*]] = mhlo.divide %[[TMP_16]], %[[TMP_19]]
// CHECK: %[[TMP_21:.*]] = mhlo.subtract %[[TMP_13]], %[[TMP_20]]
// CHECK: %[[TMP_22:.*]] = mhlo.divide %[[TMP_16]], %[[TMP_18]]
// CHECK: %[[TMP_23:.*]] = mhlo.add %[[TMP_15]], %[[TMP_22]]
// CHECK: %[[TMP_24:.*]] = mhlo.constant dense<771.32342877765313>
// CHECK: %[[TMP_25:.*]] = mhlo.constant dense<3.000000e+00>
// CHECK: %[[TMP_26:.*]] = mhlo.add %[[TMP_5]], %[[TMP_25]]
// CHECK: %[[TMP_27:.*]] = mhlo.multiply %[[TMP_26]], %[[TMP_26]]
// CHECK: %[[TMP_28:.*]] = mhlo.divide %[[TMP_24]], %[[TMP_27]]
// CHECK: %[[TMP_29:.*]] = mhlo.subtract %[[TMP_21]], %[[TMP_28]]
// CHECK: %[[TMP_30:.*]] = mhlo.divide %[[TMP_24]], %[[TMP_26]]
// CHECK: %[[TMP_31:.*]] = mhlo.add %[[TMP_23]], %[[TMP_30]]
// CHECK: %[[TMP_32:.*]] = mhlo.constant dense<-176.61502916214059>
// CHECK: %[[TMP_33:.*]] = mhlo.constant dense<4.000000e+00>
// CHECK: %[[TMP_34:.*]] = mhlo.add %[[TMP_5]], %[[TMP_33]]
// CHECK: %[[TMP_35:.*]] = mhlo.multiply %[[TMP_34]], %[[TMP_34]]
// CHECK: %[[TMP_36:.*]] = mhlo.divide %[[TMP_32]], %[[TMP_35]]
// CHECK: %[[TMP_37:.*]] = mhlo.subtract %[[TMP_29]], %[[TMP_36]]
// CHECK: %[[TMP_38:.*]] = mhlo.divide %[[TMP_32]], %[[TMP_34]]
// CHECK: %[[TMP_39:.*]] = mhlo.add %[[TMP_31]], %[[TMP_38]]
// CHECK: %[[TMP_40:.*]] = mhlo.constant dense<12.507343278686905>
// CHECK: %[[TMP_41:.*]] = mhlo.constant dense<5.000000e+00>
// CHECK: %[[TMP_42:.*]] = mhlo.add %[[TMP_5]], %[[TMP_41]]
// CHECK: %[[TMP_43:.*]] = mhlo.multiply %[[TMP_42]], %[[TMP_42]]
// CHECK: %[[TMP_44:.*]] = mhlo.divide %[[TMP_40]], %[[TMP_43]]
// CHECK: %[[TMP_45:.*]] = mhlo.subtract %[[TMP_37]], %[[TMP_44]]
// CHECK: %[[TMP_46:.*]] = mhlo.divide %[[TMP_40]], %[[TMP_42]]
// CHECK: %[[TMP_47:.*]] = mhlo.add %[[TMP_39]], %[[TMP_46]]
// CHECK: %[[TMP_48:.*]] = mhlo.constant dense<-0.13857109526572012>
// CHECK: %[[TMP_49:.*]] = mhlo.constant dense<6.000000e+00>
// CHECK: %[[TMP_50:.*]] = mhlo.add %[[TMP_5]], %[[TMP_49]]
// CHECK: %[[TMP_51:.*]] = mhlo.multiply %[[TMP_50]], %[[TMP_50]]
// CHECK: %[[TMP_52:.*]] = mhlo.divide %[[TMP_48]], %[[TMP_51]]
// CHECK: %[[TMP_53:.*]] = mhlo.subtract %[[TMP_45]], %[[TMP_52]]
// CHECK: %[[TMP_54:.*]] = mhlo.divide %[[TMP_48]], %[[TMP_50]]
// CHECK: %[[TMP_55:.*]] = mhlo.add %[[TMP_47]], %[[TMP_54]]
// CHECK: %[[TMP_56:.*]] = mhlo.constant dense<9.9843695780195716E-6>
// CHECK: %[[TMP_57:.*]] = mhlo.constant dense<7.000000e+00>
// CHECK: %[[TMP_58:.*]] = mhlo.add %[[TMP_5]], %[[TMP_57]]
// CHECK: %[[TMP_59:.*]] = mhlo.multiply %[[TMP_58]], %[[TMP_58]]
// CHECK: %[[TMP_60:.*]] = mhlo.divide %[[TMP_56]], %[[TMP_59]]
// CHECK: %[[TMP_61:.*]] = mhlo.subtract %[[TMP_53]], %[[TMP_60]]
// CHECK: %[[TMP_62:.*]] = mhlo.divide %[[TMP_56]], %[[TMP_58]]
// CHECK: %[[TMP_63:.*]] = mhlo.add %[[TMP_55]], %[[TMP_62]]
// CHECK: %[[TMP_64:.*]] = mhlo.constant dense<1.5056327351493116E-7>
// CHECK: %[[TMP_65:.*]] = mhlo.constant dense<8.000000e+00>
// CHECK: %[[TMP_66:.*]] = mhlo.add %[[TMP_5]], %[[TMP_65]]
// CHECK: %[[TMP_67:.*]] = mhlo.multiply %[[TMP_66]], %[[TMP_66]]
// CHECK: %[[TMP_68:.*]] = mhlo.divide %[[TMP_64]], %[[TMP_67]]
// CHECK: %[[TMP_69:.*]] = mhlo.subtract %[[TMP_61]], %[[TMP_68]]
// CHECK: %[[TMP_70:.*]] = mhlo.divide %[[TMP_64]], %[[TMP_66]]
// CHECK: %[[TMP_71:.*]] = mhlo.add %[[TMP_63]], %[[TMP_70]]
// CHECK: %[[TMP_72:.*]] = mhlo.constant dense<7.500000e+00>
// CHECK: %[[TMP_73:.*]] = mhlo.add %[[TMP_72]], %[[TMP_5]]
// CHECK: %[[TMP_74:.*]] = mhlo.constant dense<2.0149030205422647>
// CHECK: %[[TMP_75:.*]] = mhlo.divide %[[TMP_5]], %[[TMP_72]]
// CHECK: %[[TMP_76:.*]] = "mhlo.log_plus_one"(%[[TMP_75]])
// CHECK: %[[TMP_77:.*]] = mhlo.add %[[TMP_74]], %[[TMP_76]]
// CHECK: %[[TMP_78:.*]] = mhlo.divide %[[TMP_69]], %[[TMP_71]]
// CHECK: %[[TMP_79:.*]] = mhlo.constant dense<7.000000e+00>
// CHECK: %[[TMP_80:.*]] = mhlo.divide %[[TMP_79]], %[[TMP_73]]
// CHECK: %[[TMP_81:.*]] = mhlo.add %[[TMP_77]], %[[TMP_78]]
// CHECK: %[[TMP_82:.*]] = mhlo.subtract %[[TMP_81]], %[[TMP_80]]
// CHECK: %[[TMP_83:.*]] = mhlo.constant dense<5.000000e-01>
// CHECK: %[[TMP_84:.*]] = mhlo.add %arg0, %[[TMP_83]]
// CHECK: %[[TMP_85:.*]] = "mhlo.floor"(%[[TMP_84]])
// CHECK: %[[TMP_86:.*]] = "mhlo.abs"(%[[TMP_85]])
// CHECK: %[[TMP_87:.*]] = mhlo.add %arg0, %[[TMP_86]]
// CHECK: %[[TMP_88:.*]] = mhlo.constant dense<3.1415926535897931>
// CHECK: %[[TMP_89:.*]] = mhlo.multiply %[[TMP_88]], %[[TMP_87]]
// CHECK: %[[TMP_90:.*]] = "mhlo.cosine"(%[[TMP_89]])
// CHECK: %[[TMP_92:.*]] = "mhlo.sine"(%[[TMP_89]])
// CHECK: %[[TMP_91:.*]] = mhlo.multiply %[[TMP_88]], %[[TMP_90]]
// CHECK: %[[TMP_93:.*]] = mhlo.divide %[[TMP_91]], %[[TMP_92]]
// CHECK: %[[TMP_94:.*]] = mhlo.subtract %[[TMP_82]], %[[TMP_93]]
// CHECK: %[[TMP_95:.*]] = "mhlo.select"(%[[TMP_1]], %[[TMP_94]], %[[TMP_82]])
// CHECK: %[[TMP_96:.*]] = "mhlo.compare"(%arg0, %[[TMP_6]]) {comparison_direction = "LE"}
// CHECK: %[[TMP_97:.*]] = "mhlo.floor"(%arg0)
// CHECK: %[[TMP_98:.*]] = "mhlo.compare"(%arg0, %[[TMP_97]]) {comparison_direction = "EQ"}
// CHECK: %[[TMP_99:.*]] = mhlo.and %[[TMP_96]], %[[TMP_98]]
// CHECK: %[[TMP_100:.*]] = mhlo.constant dense<0x7FF8000000000000>
// CHECK: %[[RES:.*]] = "mhlo.select"(%[[TMP_99]], %[[TMP_100]], %[[TMP_95]])
// CHECK: return %[[RES]]
%1 = chlo.digamma %arg : tensor<f64> -> tensor<f64>
return %1 : tensor<f64>
}
// CHECK-LABEL: @digamma_f32
// CHECK-SAME: (%[[ARG:.*]]: tensor<f32>)
func @digamma_f32(%arg : tensor<f32>) -> tensor<f32> {
// CHECK: %[[TMP_0:.*]] = mhlo.constant dense<5.000000e-01>
// CHECK: %[[TMP_1:.*]] = "mhlo.compare"(%arg0, %[[TMP_0]]) {comparison_direction = "LT"}
// CHECK: %[[TMP_2:.*]] = "mhlo.negate"(%arg0)
// CHECK: %[[TMP_3:.*]] = mhlo.constant dense<1.000000e+00>
// CHECK: %[[TMP_4:.*]] = mhlo.subtract %arg0, %[[TMP_3]]
// CHECK: %[[TMP_5:.*]] = "mhlo.select"(%[[TMP_1]], %[[TMP_2]], %[[TMP_4]])
// CHECK: %[[TMP_6:.*]] = mhlo.constant dense<0.000000e+00>
// CHECK: %[[TMP_7:.*]] = mhlo.constant dense<1.000000e+00>
// CHECK: %[[TMP_8:.*]] = mhlo.constant dense<676.520386>
// CHECK: %[[TMP_9:.*]] = mhlo.constant dense<1.000000e+00>
// CHECK: %[[TMP_10:.*]] = mhlo.add %[[TMP_5]], %[[TMP_9]]
// CHECK: %[[TMP_11:.*]] = mhlo.multiply %[[TMP_10]], %[[TMP_10]]
// CHECK: %[[TMP_12:.*]] = mhlo.divide %[[TMP_8]], %[[TMP_11]]
// CHECK: %[[TMP_13:.*]] = mhlo.subtract %[[TMP_6]], %[[TMP_12]]
// CHECK: %[[TMP_14:.*]] = mhlo.divide %[[TMP_8]], %[[TMP_10]]
// CHECK: %[[TMP_15:.*]] = mhlo.add %[[TMP_7]], %[[TMP_14]]
// CHECK: %[[TMP_16:.*]] = mhlo.constant dense<-1259.13916>
// CHECK: %[[TMP_17:.*]] = mhlo.constant dense<2.000000e+00>
// CHECK: %[[TMP_18:.*]] = mhlo.add %[[TMP_5]], %[[TMP_17]]
// CHECK: %[[TMP_19:.*]] = mhlo.multiply %[[TMP_18]], %[[TMP_18]]
// CHECK: %[[TMP_20:.*]] = mhlo.divide %[[TMP_16]], %[[TMP_19]]
// CHECK: %[[TMP_21:.*]] = mhlo.subtract %[[TMP_13]], %[[TMP_20]]
// CHECK: %[[TMP_22:.*]] = mhlo.divide %[[TMP_16]], %[[TMP_18]]
// CHECK: %[[TMP_23:.*]] = mhlo.add %[[TMP_15]], %[[TMP_22]]
// CHECK: %[[TMP_24:.*]] = mhlo.constant dense<771.323425>
// CHECK: %[[TMP_25:.*]] = mhlo.constant dense<3.000000e+00>
// CHECK: %[[TMP_26:.*]] = mhlo.add %[[TMP_5]], %[[TMP_25]]
// CHECK: %[[TMP_27:.*]] = mhlo.multiply %[[TMP_26]], %[[TMP_26]]
// CHECK: %[[TMP_28:.*]] = mhlo.divide %[[TMP_24]], %[[TMP_27]]
// CHECK: %[[TMP_29:.*]] = mhlo.subtract %[[TMP_21]], %[[TMP_28]]
// CHECK: %[[TMP_30:.*]] = mhlo.divide %[[TMP_24]], %[[TMP_26]]
// CHECK: %[[TMP_31:.*]] = mhlo.add %[[TMP_23]], %[[TMP_30]]
// CHECK: %[[TMP_32:.*]] = mhlo.constant dense<-176.615036>
// CHECK: %[[TMP_33:.*]] = mhlo.constant dense<4.000000e+00>
// CHECK: %[[TMP_34:.*]] = mhlo.add %[[TMP_5]], %[[TMP_33]]
// CHECK: %[[TMP_35:.*]] = mhlo.multiply %[[TMP_34]], %[[TMP_34]]
// CHECK: %[[TMP_36:.*]] = mhlo.divide %[[TMP_32]], %[[TMP_35]]
// CHECK: %[[TMP_37:.*]] = mhlo.subtract %[[TMP_29]], %[[TMP_36]]
// CHECK: %[[TMP_38:.*]] = mhlo.divide %[[TMP_32]], %[[TMP_34]]
// CHECK: %[[TMP_39:.*]] = mhlo.add %[[TMP_31]], %[[TMP_38]]
// CHECK: %[[TMP_40:.*]] = mhlo.constant dense<12.5073433>
// CHECK: %[[TMP_41:.*]] = mhlo.constant dense<5.000000e+00>
// CHECK: %[[TMP_42:.*]] = mhlo.add %[[TMP_5]], %[[TMP_41]]
// CHECK: %[[TMP_43:.*]] = mhlo.multiply %[[TMP_42]], %[[TMP_42]]
// CHECK: %[[TMP_44:.*]] = mhlo.divide %[[TMP_40]], %[[TMP_43]]
// CHECK: %[[TMP_45:.*]] = mhlo.subtract %[[TMP_37]], %[[TMP_44]]
// CHECK: %[[TMP_46:.*]] = mhlo.divide %[[TMP_40]], %[[TMP_42]]
// CHECK: %[[TMP_47:.*]] = mhlo.add %[[TMP_39]], %[[TMP_46]]
// CHECK: %[[TMP_48:.*]] = mhlo.constant dense<-0.138571098>
// CHECK: %[[TMP_49:.*]] = mhlo.constant dense<6.000000e+00>
// CHECK: %[[TMP_50:.*]] = mhlo.add %[[TMP_5]], %[[TMP_49]]
// CHECK: %[[TMP_51:.*]] = mhlo.multiply %[[TMP_50]], %[[TMP_50]]
// CHECK: %[[TMP_52:.*]] = mhlo.divide %[[TMP_48]], %[[TMP_51]]
// CHECK: %[[TMP_53:.*]] = mhlo.subtract %[[TMP_45]], %[[TMP_52]]
// CHECK: %[[TMP_54:.*]] = mhlo.divide %[[TMP_48]], %[[TMP_50]]
// CHECK: %[[TMP_55:.*]] = mhlo.add %[[TMP_47]], %[[TMP_54]]
// CHECK: %[[TMP_56:.*]] = mhlo.constant dense<9.98436917E-6>
// CHECK: %[[TMP_57:.*]] = mhlo.constant dense<7.000000e+00>
// CHECK: %[[TMP_58:.*]] = mhlo.add %[[TMP_5]], %[[TMP_57]]
// CHECK: %[[TMP_59:.*]] = mhlo.multiply %[[TMP_58]], %[[TMP_58]]
// CHECK: %[[TMP_60:.*]] = mhlo.divide %[[TMP_56]], %[[TMP_59]]
// CHECK: %[[TMP_61:.*]] = mhlo.subtract %[[TMP_53]], %[[TMP_60]]
// CHECK: %[[TMP_62:.*]] = mhlo.divide %[[TMP_56]], %[[TMP_58]]
// CHECK: %[[TMP_63:.*]] = mhlo.add %[[TMP_55]], %[[TMP_62]]
// CHECK: %[[TMP_64:.*]] = mhlo.constant dense<1.50563267E-7>
// CHECK: %[[TMP_65:.*]] = mhlo.constant dense<8.000000e+00>
// CHECK: %[[TMP_66:.*]] = mhlo.add %[[TMP_5]], %[[TMP_65]]
// CHECK: %[[TMP_67:.*]] = mhlo.multiply %[[TMP_66]], %[[TMP_66]]
// CHECK: %[[TMP_68:.*]] = mhlo.divide %[[TMP_64]], %[[TMP_67]]
// CHECK: %[[TMP_69:.*]] = mhlo.subtract %[[TMP_61]], %[[TMP_68]]
// CHECK: %[[TMP_70:.*]] = mhlo.divide %[[TMP_64]], %[[TMP_66]]
// CHECK: %[[TMP_71:.*]] = mhlo.add %[[TMP_63]], %[[TMP_70]]
// CHECK: %[[TMP_72:.*]] = mhlo.constant dense<7.500000e+00>
// CHECK: %[[TMP_73:.*]] = mhlo.add %[[TMP_72]], %[[TMP_5]]
// CHECK: %[[TMP_74:.*]] = mhlo.constant dense<2.01490307>
// CHECK: %[[TMP_75:.*]] = mhlo.divide %[[TMP_5]], %[[TMP_72]]
// CHECK: %[[TMP_76:.*]] = "mhlo.log_plus_one"(%[[TMP_75]])
// CHECK: %[[TMP_77:.*]] = mhlo.add %[[TMP_74]], %[[TMP_76]]
// CHECK: %[[TMP_78:.*]] = mhlo.divide %[[TMP_69]], %[[TMP_71]]
// CHECK: %[[TMP_79:.*]] = mhlo.constant dense<7.000000e+00>
// CHECK: %[[TMP_80:.*]] = mhlo.divide %[[TMP_79]], %[[TMP_73]]
// CHECK: %[[TMP_81:.*]] = mhlo.add %[[TMP_77]], %[[TMP_78]]
// CHECK: %[[TMP_82:.*]] = mhlo.subtract %[[TMP_81]], %[[TMP_80]]
// CHECK: %[[TMP_83:.*]] = mhlo.constant dense<5.000000e-01>
// CHECK: %[[TMP_84:.*]] = mhlo.add %arg0, %[[TMP_83]]
// CHECK: %[[TMP_85:.*]] = "mhlo.floor"(%[[TMP_84]])
// CHECK: %[[TMP_86:.*]] = "mhlo.abs"(%[[TMP_85]])
// CHECK: %[[TMP_87:.*]] = mhlo.add %arg0, %[[TMP_86]]
// CHECK: %[[TMP_88:.*]] = mhlo.constant dense<3.14159274>
// CHECK: %[[TMP_89:.*]] = mhlo.multiply %[[TMP_88]], %[[TMP_87]]
// CHECK: %[[TMP_90:.*]] = "mhlo.cosine"(%[[TMP_89]])
// CHECK: %[[TMP_92:.*]] = "mhlo.sine"(%[[TMP_89]])
// CHECK: %[[TMP_91:.*]] = mhlo.multiply %[[TMP_88]], %[[TMP_90]]
// CHECK: %[[TMP_93:.*]] = mhlo.divide %[[TMP_91]], %[[TMP_92]]
// CHECK: %[[TMP_94:.*]] = mhlo.subtract %[[TMP_82]], %[[TMP_93]]
// CHECK: %[[TMP_95:.*]] = "mhlo.select"(%[[TMP_1]], %[[TMP_94]], %[[TMP_82]])
// CHECK: %[[TMP_96:.*]] = "mhlo.compare"(%arg0, %[[TMP_6]]) {comparison_direction = "LE"}
// CHECK: %[[TMP_97:.*]] = "mhlo.floor"(%arg0)
// CHECK: %[[TMP_98:.*]] = "mhlo.compare"(%arg0, %[[TMP_97]]) {comparison_direction = "EQ"}
// CHECK: %[[TMP_99:.*]] = mhlo.and %[[TMP_96]], %[[TMP_98]]
// CHECK: %[[TMP_100:.*]] = mhlo.constant dense<0x7FC00000>
// CHECK: %[[RES:.*]] = "mhlo.select"(%[[TMP_99]], %[[TMP_100]], %[[TMP_95]])
// CHECK: return %[[RES]]
%1 = chlo.digamma %arg : tensor<f32> -> tensor<f32>
return %1 : tensor<f32>
}
// CHECK-LABEL: @digamma_f16
// CHECK-SAME: (%[[ARG:.*]]: tensor<f16>)
func @digamma_f16(%arg : tensor<f16>) -> tensor<f16> {
// CHECK: "mhlo.convert"(%[[ARG]]) : (tensor<f16>) -> tensor<f32>
// CHECK: %[[RES:.*]] = "mhlo.convert"(%{{.*}}) : (tensor<f32>) -> tensor<f16>
// CHECK: return %[[RES]]
%1 = chlo.digamma %arg : tensor<f16> -> tensor<f16>
return %1 : tensor<f16>
}