[MLIR] Add support for representing variadic reduce-window in HLO/LMHLO dialect.

-  Fixed a subset of transformations to handle variadic reduce-window.

PiperOrigin-RevId: 366278650
This commit is contained in:
Rahul Joshi 2021-04-01 10:23:35 -07:00 committed by TensorFlow MLIR Team
parent d1f697e618
commit ff2cbfa2ec
8 changed files with 232 additions and 80 deletions

View File

@ -1257,6 +1257,7 @@ def HLO_TriangularSolveOp: HLO_Op<"triangular_solve",
def HLO_ReduceWindowOp: HLO_Op<"reduce_window", [
RecursiveSideEffects,
SameVariadicOperandSize,
SingleBlockImplicitTerminator<"ReturnOp">
]>, BASE_HLO_ReduceWindowOp {
@ -1264,8 +1265,8 @@ def HLO_ReduceWindowOp: HLO_Op<"reduce_window", [
// attributes are 1-d. Attributes' leading dimension should match rank of the
// inputs.
let arguments = (ins
HLO_Tensor:$operand,
HLO_Tensor:$init_value,
Variadic<HLO_Tensor>:$inputs,
Variadic<HLO_Tensor>:$init_values,
I64ElementsAttr:$window_dimensions,
// If strides or dilations attributes are missing then the default value is
// one for each of the input dimensions. Similarly, padding values are zero
@ -1276,15 +1277,36 @@ def HLO_ReduceWindowOp: HLO_Op<"reduce_window", [
OptionalAttr<I64ElementsAttr>:$padding
);
let results = (outs HLO_Tensor);
let results = (outs Variadic<HLO_Tensor>);
// TODO(hinsu): Verify that the attached body arguments and results are
// compatible with reduce op's operands.
let regions = (region SizedRegion<1>:$body);
let hasCustomHLOConverter = 1;
// Builder for non-variadic version of the operation.
let builders = [
OpBuilder<(ins "Type":$result_type, "Value":$operand,
"Value":$init_value,
"DenseIntElementsAttr":$window_dimensions,
"DenseIntElementsAttr":$window_strides,
"DenseIntElementsAttr":$base_dilations,
"DenseIntElementsAttr":$window_dilations,
"DenseIntElementsAttr":$padding),
[{
build($_builder, $_state, TypeRange(result_type), ValueRange(operand),
ValueRange(init_value), window_dimensions, window_strides,
base_dilations, window_dilations, padding);
}]>
];
let hasCustomHLOConverter = 1;
let verifier = [{ return Verify(*this); }];
// TODO(hinsu): Implement custom printer and parser.
let extraClassDeclaration = [{
// Get the operation used for reduction applied to `result_index`th result.
Operation *getReductionOp(int result_index);
}];
}
def HLO_ReturnOp : HLO_Op<"return", [NoSideEffect, Terminator]> {

View File

@ -216,12 +216,12 @@ def LHLO_ReduceOp: LHLO_Op<"reduce", [SameVariadicOperandSize]>, BASE_HLO_Reduce
let hasCanonicalizer = 1;
}
def LHLO_ReduceWindowOp: LHLO_Op<"reduce_window", []>, BASE_HLO_ReduceWindowOp {
def LHLO_ReduceWindowOp: LHLO_Op<"reduce_window", [SameVariadicOperandSize]>,
BASE_HLO_ReduceWindowOp {
let arguments = (ins
Arg<LHLO_Buffer, "", [MemRead]>:$operand,
Arg<LHLO_Buffer, "", [MemRead]>:$init_value,
Arg<LHLO_Buffer, "", [MemWrite]>:$out,
Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$inputs,
Arg<Variadic<LHLO_Buffer>, "", [MemRead]>:$init_values,
Arg<Variadic<LHLO_Buffer>, "", [MemWrite]>:$out,
I64ElementsAttr:$window_dimensions,
// If strides or dilations attributes are missing then the default value is
// one for each of the input dimensions. Similarly, padding values are zero
@ -233,6 +233,7 @@ def LHLO_ReduceWindowOp: LHLO_Op<"reduce_window", []>, BASE_HLO_ReduceWindowOp {
);
let regions = (region SizedRegion<1>:$body);
let verifier = [{ return Verify(*this); }];
}
// TODO(timshen): Add a custom syntax for this.

View File

@ -1728,6 +1728,38 @@ static LogicalResult Verify(RecvOp op) {
OpFoldResult CopyOp::fold(ArrayRef<Attribute> operands) { return getOperand(); }
//===----------------------------------------------------------------------===//
// ReduceWindowOp
//===----------------------------------------------------------------------===//
// For reduce-window, all `inputs` need to have compatible shapes.
static LogicalResult Verify(ReduceWindowOp op) {
if (failed(verifyCompatibleShapes(op.inputs().getTypes())))
return op.emitOpError() << "requires same shape for all inputs";
return success();
}
// Get the operation used for reduction applied to `result_index`th result. Its
// expected to be a binary operation that consumes `result_index`th and
// `result_index + operands().size`th arguments of the body.
Operation* ReduceWindowOp::getReductionOp(int result_index) {
auto return_op = cast<ReturnOp>(body().front().getTerminator());
Operation* compute_op = return_op.results()[result_index].getDefiningOp();
if (compute_op->getNumOperands() != 2) return nullptr;
auto arg0 = compute_op->getOperand(0).dyn_cast<BlockArgument>();
auto arg1 = compute_op->getOperand(1).dyn_cast<BlockArgument>();
if (!arg0 || !arg1) return nullptr;
int arg0_num = arg0.getArgNumber();
int arg1_num = arg1.getArgNumber();
int other_arg_index = result_index + inputs().size();
if (arg0_num == result_index && arg1_num == other_arg_index)
return compute_op;
if (arg0_num == other_arg_index && arg1_num == result_index &&
compute_op->hasTrait<OpTrait::IsCommutative>())
return compute_op;
return nullptr;
}
//===----------------------------------------------------------------------===//
// ReverseOp
//===----------------------------------------------------------------------===//

View File

@ -281,6 +281,17 @@ void ReduceOp::getCanonicalizationPatterns(OwningRewritePatternList& results,
results.insert<RemoveCopyInReduceBody>(context);
}
//===----------------------------------------------------------------------===//
// ReduceWindowOp.
//===----------------------------------------------------------------------===//
// For reduce-window, all `inputs` need to have compatible shapes.
static LogicalResult Verify(ReduceWindowOp op) {
if (failed(verifyCompatibleShapes(op.inputs().getTypes())))
return op.emitOpError() << "requires same shape for all operands";
return success();
}
} // namespace lmhlo
} // namespace mlir

View File

@ -1687,40 +1687,34 @@ struct ReduceWindowOpOnTensorsConversion
/// the pooling is determined based on the body of the reduce window
/// operation. This class enumerates the different variants.
enum class PoolingType {
kInvalid,
kMin,
kMax,
kAdd,
};
static PoolingType getPoolingType(Region& region) {
assert(region.getBlocks().size() == 1 &&
"expected the region has exactlly one block");
Block& block = region.front();
assert(block.getOperations().size() == 2 &&
"expected the block has exactlly two operations");
auto op = block.begin();
if (isa<mhlo::MinOp>(op)) return PoolingType::kMin;
if (isa<mhlo::MaxOp>(op)) return PoolingType::kMax;
if (isa<mhlo::AddOp>(op)) return PoolingType::kAdd;
llvm_unreachable("unknown pooling type");
static PoolingType getPoolingType(mhlo::ReduceWindowOp reduce_op,
int result_index) {
if (Operation* op = reduce_op.getReductionOp(result_index)) {
if (isa<mhlo::MinOp>(*op)) return PoolingType::kMin;
if (isa<mhlo::MaxOp>(*op)) return PoolingType::kMax;
if (isa<mhlo::AddOp>(*op)) return PoolingType::kAdd;
}
return PoolingType::kInvalid;
}
LogicalResult matchAndRewrite(
mhlo::ReduceWindowOp op, ArrayRef<Value> args,
ConversionPatternRewriter& rewriter) const override {
auto loc = op.getLoc();
auto result_type = op.getResult().getType().cast<ShapedType>();
if (result_type.getRank() != 4) {
int rank = op.getResultTypes()[0].cast<ShapedType>().getRank();
if (rank != 4) {
return rewriter.notifyMatchFailure(op, "expected NHWC pooling-based op");
}
// Create a fake window dimension.
SmallVector<int64_t, 4> shapes;
SmallVector<int64_t, 2> shapes;
shapes.push_back(op.window_dimensions().getValue<int64_t>(1));
shapes.push_back(op.window_dimensions().getValue<int64_t>(2));
auto fake_window_dims = rewriter.create<linalg::InitTensorOp>(
loc, shapes, result_type.getElementType());
if (op.window_strides() &&
(op.window_strides().getValue().getValue<int64_t>(0) != 1 ||
@ -1735,10 +1729,6 @@ struct ReduceWindowOpOnTensorsConversion
op, "expected window_dimensions to be [1,x,y,1]");
}
if (!args[0].getType().cast<ShapedType>().getElementType().isF32()) {
return rewriter.notifyMatchFailure(op, "expected element type to be f32");
}
Attribute strides;
if (op.window_stridesAttr()) {
strides = rewriter.getI64VectorAttr(
@ -1756,39 +1746,62 @@ struct ReduceWindowOpOnTensorsConversion
dilations = rewriter.getI64VectorAttr({1, 1});
}
Value init_tensor = rewriter.create<linalg::InitTensorOp>(
loc, result_type.getShape(), result_type.getElementType());
Value init_value = args[1];
init_value = rewriter.create<tensor::ExtractOp>(loc, init_value);
Value filled_init_tensor =
rewriter.create<linalg::FillOp>(loc, init_tensor, init_value)
.getResult(0);
auto create_op = [&](auto* type_ptr) -> linalg::LinalgOp {
return cast<linalg::LinalgOp>(
rewriter
.create<std::remove_pointer_t<decltype(type_ptr)>>(
loc, ArrayRef<Type>{result_type},
ValueRange{args[0], fake_window_dims.getResult()},
filled_init_tensor, dilations, strides)
.getOperation());
};
linalg::LinalgOp pooling_op;
PoolingType pooling_type = getPoolingType(op.body());
switch (pooling_type) {
case PoolingType::kMin: {
pooling_op = create_op(static_cast<linalg::PoolingNHWCMinOp*>(nullptr));
break;
SmallVector<Value> pooling_ops;
ArrayRef<Value> inputs = args.take_front(op.inputs().size());
ArrayRef<Value> init_values = args.drop_front(op.inputs().size());
for (auto it : llvm::zip(op.getResults(), inputs, init_values)) {
OpResult result = std::get<0>(it);
Value input = std::get<1>(it);
Value init_value = std::get<2>(it);
auto result_type = result.getType().cast<ShapedType>();
if (!input.getType().cast<ShapedType>().getElementType().isF32()) {
return rewriter.notifyMatchFailure(op,
"expected element type to be f32");
}
case PoolingType::kMax: {
pooling_op = create_op(static_cast<linalg::PoolingNHWCMaxOp*>(nullptr));
break;
}
case PoolingType::kAdd: {
pooling_op = create_op(static_cast<linalg::PoolingNHWCSumOp*>(nullptr));
break;
// Create a fake window dimension.
auto fake_window_dims = rewriter.create<linalg::InitTensorOp>(
loc, shapes, result_type.getElementType());
Value init_tensor = rewriter.create<linalg::InitTensorOp>(
loc, result_type.getShape(), result_type.getElementType());
init_value = rewriter.create<tensor::ExtractOp>(loc, init_value);
Value filled_init_tensor =
rewriter.create<linalg::FillOp>(loc, init_tensor, init_value)
.getResult(0);
auto create_op = [&](auto* type_ptr) -> linalg::LinalgOp {
return cast<linalg::LinalgOp>(
rewriter
.create<std::remove_pointer_t<decltype(type_ptr)>>(
loc, ArrayRef<Type>{result_type},
ValueRange{args[0], fake_window_dims.getResult()},
filled_init_tensor, dilations, strides)
.getOperation());
};
linalg::LinalgOp pooling_op;
PoolingType pooling_type = getPoolingType(op, result.getResultNumber());
switch (pooling_type) {
case PoolingType::kMin: {
pooling_op =
create_op(static_cast<linalg::PoolingNHWCMinOp*>(nullptr));
break;
}
case PoolingType::kMax: {
pooling_op =
create_op(static_cast<linalg::PoolingNHWCMaxOp*>(nullptr));
break;
}
case PoolingType::kAdd: {
pooling_op =
create_op(static_cast<linalg::PoolingNHWCSumOp*>(nullptr));
break;
}
case PoolingType::kInvalid:
return rewriter.notifyMatchFailure(op, "unknown reduction operation");
}
pooling_ops.push_back(pooling_op->getResult(0));
}
rewriter.replaceOp(op, pooling_op->getResult(0));
rewriter.replaceOp(op, pooling_ops);
return success();
}
};

View File

@ -93,8 +93,8 @@ struct MappedIvs {
};
template <typename OpTy>
MappedIvs MapWindowIvsToInput(OpTy op, ValueRange ivs, ValueRange window_ivs,
OpBuilder* b) {
MappedIvs MapWindowIvsToInput(OpTy op, Value operand, ValueRange ivs,
ValueRange window_ivs, OpBuilder* b) {
MappedIvs mapped_ivs;
if (!op.window_strides().hasValue()) {
@ -108,7 +108,6 @@ MappedIvs MapWindowIvsToInput(OpTy op, ValueRange ivs, ValueRange window_ivs,
auto padding = op.padding().getValue();
auto loc = op.getLoc();
auto operand = op.operand();
auto operand_shape = operand.getType().template cast<MemRefType>().getShape();
// `in_bounds` is false when the mapped indices are in the padding area.
@ -196,7 +195,7 @@ class ReduceOpConverter : public OpConversionPattern<lmhlo::ReduceOp> {
LogicalResult matchAndRewrite(
lmhlo::ReduceOp reduce_op, ArrayRef<Value> /*args*/,
ConversionPatternRewriter& rewriter) const final {
// TODO(b/137624192) Implement variadic reduce.
// TODO(b/183977252) : Handle variadic ReduceOp/ReduceWindowOp
if (reduce_op.out().size() != 1) return failure();
scf::ReduceOp scf_reduce_op =
@ -312,7 +311,7 @@ class ReduceOpConverter : public OpConversionPattern<lmhlo::ReduceOp> {
// value = input[I]
// else
// value = neutral_value
// accumulator = reduction_operator(output[O], value)
// accumulator = reduction_operator(accumulator, value)
// output[O] = accumulator
//
// Converts `lmhlo.ReduceWindowOp` into two scf::ParallelOp and a
@ -367,6 +366,9 @@ class ReduceWindowOpConverter
LogicalResult matchAndRewrite(
lmhlo::ReduceWindowOp reduce_window_op, ArrayRef<Value> /*args*/,
ConversionPatternRewriter& rewriter) const final {
// TODO(b/183977252) : Handle variadic ReduceOp/ReduceWindowOp
if (reduce_window_op.out().size() != 1) return failure();
scf::ParallelOp output_loop, window_loop;
std::tie(output_loop, window_loop) =
CreateParallelLoopsToTraverseOutputAndWindow(reduce_window_op,
@ -387,14 +389,14 @@ class ReduceWindowOpConverter
lmhlo::ReduceWindowOp reduce_window_op,
ConversionPatternRewriter* rewriter) const {
auto loc = reduce_window_op.getLoc();
Value init_value =
rewriter->create<memref::LoadOp>(loc, reduce_window_op.init_value());
Value init_value = rewriter->create<memref::LoadOp>(
loc, reduce_window_op.init_values()[0]);
Value zero = rewriter->create<ConstantIndexOp>(loc, 0);
Value one = rewriter->create<ConstantIndexOp>(loc, 1);
// Create an outer parallel loop that spans the output of ReduceWindowOp.
Value output = reduce_window_op.out();
Value output = reduce_window_op.out()[0];
auto output_loop = MakeLoopOverShape(loc, output, rewriter);
// Create a nested loop that traverses the window.
@ -429,22 +431,22 @@ class ReduceWindowOpConverter
"`window_dilations` attributes yet. The attributes will be ignored.");
}
Value operand = reduce_window_op.operand();
auto operand_type = operand.getType().cast<MemRefType>();
Value input = reduce_window_op.inputs()[0];
auto input_type = input.getType().cast<MemRefType>();
// Compute ivs in 'arg' buffer and whether these ivs are in pad area or not.
MappedIvs mapped_ivs =
MapWindowIvsToInput(reduce_window_op, output_loop.getInductionVars(),
window_loop.getInductionVars(), rewriter);
MappedIvs mapped_ivs = MapWindowIvsToInput(
reduce_window_op, input, output_loop.getInductionVars(),
window_loop.getInductionVars(), rewriter);
auto elem_or_init = rewriter->create<scf::IfOp>(
loc, operand_type.getElementType(), mapped_ivs.in_bounds,
loc, input_type.getElementType(), mapped_ivs.in_bounds,
/*withElseRegion=*/true);
OpBuilder then_builder =
elem_or_init.getThenBodyBuilder(rewriter->getListener());
Value elem = then_builder.create<mlir::memref::LoadOp>(
loc, reduce_window_op.operand(), mapped_ivs.ivs);
Value elem =
then_builder.create<mlir::memref::LoadOp>(loc, input, mapped_ivs.ivs);
then_builder.create<scf::YieldOp>(loc, elem);
OpBuilder else_builder =
@ -611,9 +613,9 @@ class SelectAndScatterOpConverter
OpBuilder::atBlockEnd(window_loops.inner_loop.getBody());
// Compute ivs in 'arg' buffer and whether these ivs are in the pad area.
MappedIvs mapped_ivs =
MapWindowIvsToInput(s_and_s_op, loop_over_src.getInductionVars(),
window_loops.window_ivs, &inner_loop_b);
MappedIvs mapped_ivs = MapWindowIvsToInput(
s_and_s_op, s_and_s_op.operand(), loop_over_src.getInductionVars(),
window_loops.window_ivs, &inner_loop_b);
IterArgs ivs_val_flag(window_loops.inner_loop.getRegionIterArgs());

View File

@ -1863,6 +1863,43 @@ func @reduce_window_max_nhwc_with_cst(%arg0: tensor<1x18x18x64xf32>) -> tensor<1
// -----
func @reduce_window_sum_max_nhwc(%arg0: tensor<1x18x18x64xf32>,
%arg1: tensor<f32>) -> (tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32>) {
%0:2 = "mhlo.reduce_window"(%arg0, %arg0, %arg1, %arg1) ( {
^bb0(%arg2: tensor<f32>, %arg3 : tensor<f32>, %arg4: tensor<f32>, %arg5 : tensor<f32>):
%1 = mhlo.add %arg2, %arg4 : tensor<f32>
%2 = mhlo.maximum %arg3, %arg5 : tensor<f32>
"mhlo.return"(%1, %2) : (tensor<f32>, tensor<f32>) -> ()
}) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>,
window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor<1x18x18x64xf32>, tensor<f32>, tensor<f32>) -> (tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32>)
return %0#0, %0#1 : tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32>
}
// CHECK-LABEL: func @reduce_window_sum_max_nhwc
// CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]
// CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]
// CHECK: %[[WINDOW0:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32>
// CHECK: %[[INIT0:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32>
// CHECK: %[[INIT_VAL0:.+]] = tensor.extract %[[ARG1]][] : tensor<f32>
// CHECK: %[[FILL0:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32>
// CHECK: %[[RES0:.+]] = linalg.pooling_nhwc_sum
// CHECK-SAME: {dilations = dense<1> : vector<2xi64>
// CHECK-SAME: strides = dense<2> : vector<2xi64>}
// CHECK-SAME: ins(%[[ARG0]], %[[WINDOW0]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>)
// CHECK-SAME: outs(%[[FILL0]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32>
// CHECK: %[[WINDOW1:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32>
// CHECK: %[[INIT1:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32>
// CHECK: %[[INIT_VAL1:.+]] = tensor.extract %[[ARG1]][] : tensor<f32>
// CHECK: %[[FILL1:.+]] = linalg.fill(%[[INIT1]], %[[INIT_VAL1]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32>
// CHECK: %[[RES1:.+]] = linalg.pooling_nhwc_max
// CHECK-SAME: {dilations = dense<1> : vector<2xi64>
// CHECK-SAME: strides = dense<2> : vector<2xi64>}
// CHECK-SAME: ins(%[[ARG0]], %[[WINDOW1]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>)
// CHECK-SAME: outs(%[[FILL1]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32>
// CHECK: return %[[RES0]], %[[RES1]]
// -----
func @torch_select_index(%arg0: tensor<5x1x5xi32>,
%arg1: tensor<2xi32>) -> tensor<2x1x5xi32> {
%0 = "mhlo.torch_index_select"(%arg0, %arg1) {

View File

@ -1389,3 +1389,37 @@ func @custom_call_multiple_outputs(%x: tensor<2xf32>) -> tensor<2xf32> {
%1 = "mhlo.add"(%0#0, %0#1) : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xf32>
return %1 : tensor<2xf32>
}
// -----
// CHECK: func @reduce_window
func @reduce_window(%arg0: tensor<4x2xf32>, %arg1: tensor<4x2xi32>, %init0: tensor<f32>, %init1: tensor<i32>) -> (tensor<2x2xf32>, tensor<2x2xi32>) {
%0:2 = "mhlo.reduce_window"(%arg0, %arg1, %init0, %init1) ({
^bb0(%a0: tensor<f32>, %a1: tensor<i32>, %b0: tensor<f32>, %b1: tensor<i32>): // no predecessors
%2 = mhlo.add %a0, %b0 : tensor<f32>
%3 = mhlo.add %a1, %b1 : tensor<i32>
%4 = "mhlo.tuple"(%2, %3) : (tensor<f32>, tensor<i32>) -> tuple<tensor<f32>, tensor<i32>>
"mhlo.return"(%4) : (tuple<tensor<f32>, tensor<i32>>) -> ()
})
{ padding = dense<[[2, 2], [0, 0]]> : tensor<2x2xi64>,
window_dimensions = dense<[5, 1]> : tensor<2xi64>,
window_strides = dense<[3, 1]> : tensor<2xi64> } : (tensor<4x2xf32>, tensor<4x2xi32>, tensor<f32>, tensor<i32>) -> (tensor<2x2xf32>, tensor<2x2xi32>)
return %0#0, %0#1 : tensor<2x2xf32>, tensor<2x2xi32>
}
// -----
func @reduce_window_invalid(%arg0: tensor<4x2xf32>, %arg1: tensor<4x3xi32>, %init0: tensor<f32>, %init1: tensor<i32>) -> (tensor<2x2xf32>, tensor<2x2xi32>) {
// expected-error @+1 {{requires same shape for all inputs}}
%0:2 = "mhlo.reduce_window"(%arg0, %arg1, %init0, %init1) ({
^bb0(%a0: tensor<f32>, %a1: tensor<i32>, %b0: tensor<f32>, %b1: tensor<i32>): // no predecessors
%2 = mhlo.add %a0, %b0 : tensor<f32>
%3 = mhlo.add %a1, %b1 : tensor<i32>
%4 = "mhlo.tuple"(%2, %3) : (tensor<f32>, tensor<i32>) -> tuple<tensor<f32>, tensor<i32>>
"mhlo.return"(%4) : (tuple<tensor<f32>, tensor<i32>>) -> ()
})
{ padding = dense<[[2, 2], [0, 0]]> : tensor<2x2xi64>,
window_dimensions = dense<[5, 1]> : tensor<2xi64>,
window_strides = dense<[3, 1]> : tensor<2xi64> } : (tensor<4x2xf32>, tensor<4x3xi32>, tensor<f32>, tensor<i32>) -> (tensor<2x2xf32>, tensor<2x2xi32>)
return %0#0, %0#1 : tensor<2x2xf32>, tensor<2x2xi32>
}