Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/40745
Fold broadcast_in_dim op if the operand is the result of a tensor splat.
Copybara import of the project:
--
26c9f631448b8d6ffd20ece39ea8d4132b5550c7 by Uday Bondhugula <uday@polymagelabs.com>:
[MLIR] Add constant folder for xla_hlo.broadcast_in_dim op
Fold broadcast_in_dim op if the operand is the result of a tensor
splat.
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/40745 from polymage-labs:broadcast_in_dim_fold 26c9f631448b8d6ffd20ece39ea8d4132b5550c7
PiperOrigin-RevId: 320365164
Following on the plan of isolating the compiler/mlir/hlo directory.
Another xla_lhlo dialect will be created under compiler/mlir/xla/ later.
PiperOrigin-RevId: 320210326
There is no reason to have a multidimensional iota for codegen.
This should be canonicalized to a single dimensional iota followed
by a broadcast. Changing iota to on a single dimension and a broadcast
substantially simplifies implementing iota operations.
PiperOrigin-RevId: 320095470
Also add a localized `mlir-hlo-opt` binary for the testing of
tensorflow/compiler/mlir/hlo/... ; this directory is intended to be self-contained
and depend only on MLIR.
PiperOrigin-RevId: 319878984
We're preparing to restructure the MLIR HLO ecosystem with 5 dialects:
- chlo: client dialect with explicit broadcast and multiple composite operations
- mhlo: hlo with dynamic shape, decouple from XLA for evolution purpose
- lmhlo: same as above, but after buffer assignment.
- xla_hlo: mapping 1:1 to the XLA HloInstruction class.
- xla_lhlo: same as above, but after buffer assignment.
The first three dialects are intended to live in the new tensorflow/compiler/mlir/hlo
path, the latter two will be created in tensorflow/compiler/mlir/xla.
This patch only moves the directory, will followup with other transformations and tests.
The structure of the new directory follows: https://llvm.discourse.group/t/rfc-canonical-file-paths-to-dialects/621 as we intend to make it a standalone buildable component (see also https://github.com/google/mlir-npcomp as another example).
PiperOrigin-RevId: 319273229