Verification of HLO_BroadcastInDimOp was previously failing or crashing if the
operand had a dynamic shape or was unranked. Update the verification code to
allow the operand to be unranked or have dynamic shape.
PiperOrigin-RevId: 358056793
A shape that contains exactly one element is effectively a scalar. This leads
to a speedup in cases where we have a binary op with one operand that is
effectively a scalar, because we can use the fast path.
PiperOrigin-RevId: 357515552
This is being done by just removing the approximation and lowering to atan2 lib calls later to make the implementation the same as XLA. Note that if the approximation is brought back later, it can be fixed by changing the IR checking `less-than(X, 0)` to `less-than(copysign(X, 1), 0)`
PiperOrigin-RevId: 356253941
- Use a common base class to for AllReduce, AllGather, and AllToAll in the ODS spec.
- Add basic verification for replica groups attribute.
PiperOrigin-RevId: 354969654
In IREE, we use indexed generic op to handle the initial value. However, we
lower it to a generic op that carries an init_tensor here, and leave the handle
of initialization problem to later passes.
PiperOrigin-RevId: 354294807
If mhlo.reshape is not purely collapsing some consecutive operand
dimensions into result dimensions, we will generate two linalg
reshape op for it: the first one collapses all operand dimensions
into one dimension, and the second one expands it to all result
dimensions. For this case, the number of collapsed/expanded dimensions
should be coming strictly from the operand/result. It is different
from the case where we can generate one linalg reshape. For that case,
the reassociation map should have rank equal to the largest among
operand/result shape.
PiperOrigin-RevId: 354293826
Also generate the kernels for all types of casts between signed int and float types.
This requires some adaptations to our build macros so that we can also specify the
output type of a kernel.
PiperOrigin-RevId: 354067727
Allow for relative tolerance in unary kernel tests. In case of the cosh kernels,
this allows to accept an observed difference of 5.6e-8 between the kernel and
the `std::cosh` reference (32829984.568665262 vs. 32829984.568665318) in one of
the test cases.
PiperOrigin-RevId: 351983698
We prototyped the lowering from mhlo.dot to linalg.matmul in IREE. Since Linalg
now supports matmul in tensors world, we can move the lowering logic to tensors
world, and upstream to legalize_to_linalg.cc. The patch lowers the mhlo.dot to
the linalg.matmul/matvec/dot in tensors world.
PiperOrigin-RevId: 351184911
This updates the tests to no longer rely on tensor_store. Once all users of this behavior have adopted, the tensor_store support will be removed.
PiperOrigin-RevId: 348624899
For floating point operations, this uses std.pow.
For integer operations, this lowers to a loop.
This adds a dependency on scf.
PiperOrigin-RevId: 348537232
These are failing for complex types. Complex types require special handling. We have a fallback lowering for these ops so we can disable complex element types for now.
PiperOrigin-RevId: 348205002
Shape inference in case of ops with complex element types need to use the element type of complex as the result element type and not the full operand type.
Before:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xtensor<4xcomplex<f32>>>
After:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xf32>
PiperOrigin-RevId: 348123967
It can happen that a lowering for a certain type is not implemented yet.
We should not segfault in such a case, but instead return a failure().
PiperOrigin-RevId: 347801106
- Add this attribute to match the corresponding XLA HLO attribute on convolution
operations.
- A true value indicates a reversal of the corresponding kernel spatial dimension.
- Since XLA builder does not support this attribute, use a custom HLO converted to map
from mlir::mhlo::ConvOp to XLA.
PiperOrigin-RevId: 346891737
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345902167
Two tensors having the same SSA-value isn't sufficient for equality for floating types, as `NaN != NaN`. As written this causes `tf.IsNan` to [miscompile](https://github.com/google/iree/issues/4061).
PiperOrigin-RevId: 345730640
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345618958
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345605910
- Split out enum definitions in hlo dialect into a separate .td file (similar to structs)
and generate enum decl/defs for these enums.
- Also split out the LHLO GPU enums into a separate .td file and generate enum
decl/defs for these enums as well.
- Remove unused dialect from ConvolutionAttributes and generate lhlo_gpu enums.
- Add appropriate namespace for all the enums.
PiperOrigin-RevId: 345277240
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345239817
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.
PiperOrigin-RevId: 345227848
Use constant to generate the correct assertion message. This avoids
confusion when lowering the max rank specialization for debugging.
PiperOrigin-RevId: 344769021