In IREE, we use indexed generic op to handle the initial value. However, we
lower it to a generic op that carries an init_tensor here, and leave the handle
of initialization problem to later passes.
PiperOrigin-RevId: 354294807
If mhlo.reshape is not purely collapsing some consecutive operand
dimensions into result dimensions, we will generate two linalg
reshape op for it: the first one collapses all operand dimensions
into one dimension, and the second one expands it to all result
dimensions. For this case, the number of collapsed/expanded dimensions
should be coming strictly from the operand/result. It is different
from the case where we can generate one linalg reshape. For that case,
the reassociation map should have rank equal to the largest among
operand/result shape.
PiperOrigin-RevId: 354293826
Also generate the kernels for all types of casts between signed int and float types.
This requires some adaptations to our build macros so that we can also specify the
output type of a kernel.
PiperOrigin-RevId: 354067727
Allow for relative tolerance in unary kernel tests. In case of the cosh kernels,
this allows to accept an observed difference of 5.6e-8 between the kernel and
the `std::cosh` reference (32829984.568665262 vs. 32829984.568665318) in one of
the test cases.
PiperOrigin-RevId: 351983698
We prototyped the lowering from mhlo.dot to linalg.matmul in IREE. Since Linalg
now supports matmul in tensors world, we can move the lowering logic to tensors
world, and upstream to legalize_to_linalg.cc. The patch lowers the mhlo.dot to
the linalg.matmul/matvec/dot in tensors world.
PiperOrigin-RevId: 351184911
This updates the tests to no longer rely on tensor_store. Once all users of this behavior have adopted, the tensor_store support will be removed.
PiperOrigin-RevId: 348624899
For floating point operations, this uses std.pow.
For integer operations, this lowers to a loop.
This adds a dependency on scf.
PiperOrigin-RevId: 348537232
These are failing for complex types. Complex types require special handling. We have a fallback lowering for these ops so we can disable complex element types for now.
PiperOrigin-RevId: 348205002
Shape inference in case of ops with complex element types need to use the element type of complex as the result element type and not the full operand type.
Before:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xtensor<4xcomplex<f32>>>
After:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xf32>
PiperOrigin-RevId: 348123967
It can happen that a lowering for a certain type is not implemented yet.
We should not segfault in such a case, but instead return a failure().
PiperOrigin-RevId: 347801106