Commit Graph

106 Commits

Author SHA1 Message Date
Geoffrey Martin-Noble a2b6060c0c Add folder for HLO NotOp
PiperOrigin-RevId: 364989658
2021-03-25 02:08:38 -07:00
A. Unique TensorFlower 0c4a89e52c [MLIR][MHLO] Implement shape reification for `dynamic_broadcast_in_dim`
PiperOrigin-RevId: 363622714
2021-03-18 03:39:15 -07:00
Jacques Pienaar a58e62590e Restrict canonicalization to avoid changing type
Issue #47516

PiperOrigin-RevId: 363300979
2021-03-16 16:54:05 -07:00
A. Unique TensorFlower c54527fe88 Integrate LLVM at llvm/llvm-project@678241795c
Updates LLVM usage to match
[678241795c95](https://github.com/llvm/llvm-project/commit/678241795c95)

PiperOrigin-RevId: 363257913
2021-03-16 13:33:00 -07:00
Jacques Pienaar 3de2024a9b Avoid creating tuple type only for verification
Make the error message a bit more verbose & it is cheaper to verify the elements rather than creating a (potentially) new type.

PiperOrigin-RevId: 363073909
2021-03-15 17:58:19 -07:00
Benjamin Kramer 67a770e4e0 [HLO:MLIR] Make binary op type reification emit shape_of instead of tensor ops
This gives cleaner code and allows shape optimizations to happen on the result.

PiperOrigin-RevId: 362242975
2021-03-11 02:01:35 -08:00
Rahul Joshi 9902e6ee32 [HLO] Add LMHLO CollectivePermute verification.
- Extract verification of source target pairs attached to collective permute into a common
  helper function and use that to verify both MHLO and LMHLO variants.
- Change MlirGpuTestBase::ParseMlirModule to allow returning back a failure, and use
  that to update the mlir_gpu_compile_test to check the new behavior.

PiperOrigin-RevId: 362156962
2021-03-10 15:37:12 -08:00
Stephan Herhut cabd4d9a06 Canonicalize dynamic_broadcast_in_dim to own shape with rank narrowing on the shape to a corresponding tensor.cast.
PiperOrigin-RevId: 362028291
2021-03-10 05:43:54 -08:00
A. Unique TensorFlower 55eda81407 [MLIR][HLO] Reify shape extents as `index` values
PiperOrigin-RevId: 361519167
2021-03-08 02:42:47 -08:00
Marius Brehler 29f70cb892 PR #46723: Adjust types of loop counters
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/46723

Reduces some warnings about comparison of integers of different signs.
Copybara import of the project:

--
311f436f77b334f5462127d8cf179cce067969ca by Marius Brehler <marius.brehler@iml.fraunhofer.de>:

Adjust types of loop counters

Reduces some warnings about comparison of integers of different signs.

PiperOrigin-RevId: 360912203
2021-03-04 07:36:12 -08:00
Adrian Kuegel e6a1f5f0f9 Add MinimumBroadcastShapesOp to chlo dialect.
This op is useful for rank specialization of broadcasts. Kernel Generator
needs to generate one kernel for each rank, so if we can minimize the rank
of the broadcast shape, we can support more cases with the same number of
special-cased kernels.

PiperOrigin-RevId: 360137827
2021-03-01 02:23:52 -08:00
Rahul Joshi 5adb7c6e12 [MLIR:LHLO] Add optional call target arg mapping to LMHLO CustomCall operations.
- XLA:HLO -> LMHLO conversion drops all token arguments and return values, however
  custom calls that users write still expect to get buffer pointers for these token types.
- To be able to support this, add an optional call target argument mapping attribute to
  LMHLO custom calls. When this attribute is present, it indicates the number of
  arguments and returns that the custom call expects and also indicates which LMHLO
  arg() or output() maps to which arg or result number of the custom call.

PiperOrigin-RevId: 358826664
2021-02-22 08:43:00 -08:00
Benjamin Kramer ca4034b56e [mlir][hlo] Make select ready for dynamic shapes (ranked only for now)
Move tf.SelectV2 broadcast lowering to a chlo.broadcast_select op, and lower it
to broadcasts on mhlo from there.

PiperOrigin-RevId: 358179975
2021-02-18 08:08:40 -08:00
Richard Uhler b579bd5d9e Support dynamic-shaped operand in verification of BroadcastInDim.
Verification of HLO_BroadcastInDimOp was previously failing or crashing if the
operand had a dynamic shape or was unranked. Update the verification code to
allow the operand to be unranked or have dynamic shape.

PiperOrigin-RevId: 358056793
2021-02-17 16:18:09 -08:00
A. Unique TensorFlower 81abaf364d [MLIR][MHLO] Add polygamma op to the CHLO dialect
PiperOrigin-RevId: 357724465
2021-02-16 08:32:33 -08:00
Stephan Herhut 6cd1875ee4 Implement lowering of chlo::zeta to mhlo dialect.
PiperOrigin-RevId: 355395581
2021-02-03 07:50:05 -08:00
Adrian Kuegel 96f8771ed7 Add MLIR generated kernel for Angle kernel.
This also requires a canonicalization pattern to remove a redundant dynamic
reshape from rank 1 to rank 1.

PiperOrigin-RevId: 355113135
2021-02-02 00:47:20 -08:00
Rahul Joshi 8e3890e8e8 [MLIR:HLO] Add AllGather and AllToAll operations to LMHLO dialect.
- Use a common base class to for AllReduce, AllGather, and AllToAll in the ODS spec.
- Add basic verification for replica groups attribute.

PiperOrigin-RevId: 354969654
2021-02-01 10:23:46 -08:00
Stephan Herhut e61ef86fdb Add zeta and broadcasting_zeta to chlo dialect.
PiperOrigin-RevId: 354500879
2021-01-29 03:22:52 -08:00
A. Unique TensorFlower c3ddcd6c7f [MLIR][CHLO] Implement type inference for `is_inf`-like operations in CHLO
PiperOrigin-RevId: 354265834
2021-01-28 01:37:04 -08:00
A. Unique TensorFlower fe2e5a175f [MLIR][HLO] Implement type inference for `is_finite` op
PiperOrigin-RevId: 354261420
2021-01-28 00:56:12 -08:00
A. Unique TensorFlower d77c9ad6fa [MLIR][CHLO] Add `is_inf`, `is_pos_inf`, and `is_neg_inf` to CHLO dialect
Also add the respective lowerings to MHLO.

PiperOrigin-RevId: 354101955
2021-01-27 09:00:56 -08:00
Rahul Joshi 44deae2aa1 [MLIR:HLO] Extend AllReduce to support multiple inputs and results (to model tuples).
- Instead of SameTypeOperands, add custom verification to check if operands and
  results pairwise have the same type.

PiperOrigin-RevId: 353986341
2021-01-26 17:25:22 -08:00
Jacques Pienaar a7e645f37e Fix incorrect include
PiperOrigin-RevId: 352820426
2021-01-20 10:24:41 -08:00
Tres Popp ba0346b071 Integrate LLVM at llvm/llvm-project@96ef4f307d
Updates LLVM usage to match
[96ef4f307df2](https://github.com/llvm/llvm-project/commit/96ef4f307df2)

PiperOrigin-RevId: 352786460
2021-01-20 07:09:47 -08:00
A. Unique TensorFlower ec5f5667e1 [MLIR][KernelGen] Add `tf.Asinh` kernels and complete their lowerings
PiperOrigin-RevId: 352773540
2021-01-20 05:31:15 -08:00
A. Unique TensorFlower 0e85b4d511 [MLIR][KernelGen] Add `tf.Asinh` kernels and complete their lowerings
PiperOrigin-RevId: 352604725
2021-01-19 10:51:41 -08:00
A. Unique TensorFlower 791d5afd28 [MLIR][KernelGen] Add `tf.Asinh` kernels and complete their lowerings
PiperOrigin-RevId: 351989552
2021-01-15 05:26:57 -08:00
Alexander Belyaev ecf1bf5132 [KERNEL_GEN] Add a canonicalization pattern to drop a redundant dynamic reshape.
PiperOrigin-RevId: 351141868
2021-01-11 06:38:03 -08:00
Alexander Belyaev 6c42f54298 [KERNEL_GEN] Restrict broadcast -> reshape canonicalization to identity dims.
This is needed to avoid the case, when the broadcast_in_dims also performs permutation.

PiperOrigin-RevId: 350650342
2021-01-07 15:30:28 -08:00
Alexander Belyaev 095dc28e5c [KERNEL_GEN] Add canonicalizaton pattern to drop a redundant broadcast op.
PiperOrigin-RevId: 350105790
2021-01-05 03:01:00 -08:00
A. Unique TensorFlower c4accdcc41 Integrate LLVM at llvm/llvm-project@1b97cdf885
Updates LLVM usage to match
[1b97cdf885d6](https://github.com/llvm/llvm-project/commit/1b97cdf885d6)

PiperOrigin-RevId: 348587513
2020-12-21 23:49:18 -08:00
Smit Hinsu 8d051723c0 Use InferTypeOpInterface for HLO AbsOp and fix result shape inference
Shape inference in case of ops with complex element types need to use the element type of complex as the result element type and not the full operand type.

Before:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xtensor<4xcomplex<f32>>>
After:
"mhlo.abs"(%arg0) : (tensor<4xcomplex<f32>>) -> tensor<4xf32>
PiperOrigin-RevId: 348123967
2020-12-17 17:37:07 -08:00
Smit Hinsu 737d15ded5 Handle operands with zero elements in HLO PadOp folder
PiperOrigin-RevId: 348034821
2020-12-17 09:27:36 -08:00
River Riddle 6b439f7eee [mlir][NFC] Replace usages or mlir/IR/StandardTypes.h with mlir/IR/BuiltinTypes.h
StandardTypes.h was moved to BuiltinTypes.h and is being removed.

PiperOrigin-RevId: 347115952
2020-12-11 19:01:25 -08:00
Smit Hinsu ab6ee11813 Fix folding of HLO SliceOp with zero elements
This was causing division by zero in this case.

PiperOrigin-RevId: 346920942
2020-12-10 20:22:48 -08:00
Smit Hinsu bc7b6374c8 Fix handling of negative seeds in random number generator op kernels for XLA
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.

PiperOrigin-RevId: 345902167
2020-12-05 18:55:41 -08:00
Phoenix Meadowlark c33bdcbd03 Remove fold of `mhlo.compare(%arg0, %arg0)` for floating types.
Two tensors having the same SSA-value isn't sufficient for equality for floating types, as `NaN != NaN`. As written this causes `tf.IsNan` to [miscompile](https://github.com/google/iree/issues/4061).

PiperOrigin-RevId: 345730640
2020-12-04 12:15:02 -08:00
Smit Hinsu 9bd1995f90 Legalize XlaReplicaId to HLO replica-id op
Also, define shape inference function for HLO replica-id op.

PiperOrigin-RevId: 345714342
2020-12-04 11:04:40 -08:00
A. Unique TensorFlower e87d53742b Fix handling of negative seeds in random number generator op kernels for XLA
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.

PiperOrigin-RevId: 345618958
2020-12-04 00:04:10 -08:00
Smit Hinsu 9456af5880 Fix handling of negative seeds in random number generator op kernels for XLA
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.

PiperOrigin-RevId: 345605910
2020-12-03 22:09:56 -08:00
Rahul Joshi dbbdfea95b [MLIR:HLO] Generate enum decls for HLO and LHLO GPU dialects.
- Split out enum definitions in hlo dialect into a separate .td file (similar to structs)
  and generate enum decl/defs for these enums.
- Also split out the LHLO GPU enums into a separate .td file and generate enum
  decl/defs for these enums as well.
- Remove unused dialect from ConvolutionAttributes and generate lhlo_gpu enums.
- Add appropriate namespace for all the enums.

PiperOrigin-RevId: 345277240
2020-12-02 11:39:23 -08:00
A. Unique TensorFlower 1b711670bc Fix handling of negative seeds in random number generator op kernels for XLA
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.

PiperOrigin-RevId: 345239817
2020-12-02 08:42:07 -08:00
Smit Hinsu 733fc6d032 Fix handling of negative seeds in random number generator op kernels for XLA
Casting negative s32 number to u64 directly will have leading 1s in the representation which is not what we want to get a single u64 out of two s32 seeds. Fixed this by first getting unsigned number of the same bit-width.

PiperOrigin-RevId: 345227848
2020-12-02 07:24:10 -08:00
Adrian Kuegel d14c63da54 Add a canonicalization pattern to remove redundant dynamic_reshapes.
PiperOrigin-RevId: 344517381
2020-11-27 04:46:50 -08:00
A. Unique TensorFlower 7f239c7ba2 Add canonicalizer for Reshape(Broadcast(X)) pattern when it is an identity sequence
PiperOrigin-RevId: 343251257
2020-11-19 02:32:45 -08:00
Tres Popp 1dffa62fe9 Fold away shape.shape_of(mhlo.dynamic_reshape(inp, shape))
This specific pattern can be replaced with the shape
passed to dynamic_reshape. This is implemented as a
canonicalization on mhlo.dynamic_reshape to fit in
the infrastructure of canonicalization.

PiperOrigin-RevId: 342009365
2020-11-12 02:48:26 -08:00
Smit Hinsu 4ef12aa000 Update GetDimensionSize and SetDimensionSize ops to use I64 attribute for dimension
This is to match with HLO semantics and general dimension semantics in MLIR.

Also,

* Define minimal verifier for these ops.
* Add folder for SetDimensionSize op on static shaped dimension.
* Fix assumption of ranked shape in GetDimensionSize op.

PiperOrigin-RevId: 341150923
2020-11-06 18:03:04 -08:00
Dmitry Volodin 1821c69910 PR #44405: Fix typos in compiler directory
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/44405

Splitting #43857 by top-level directories.
Copybara import of the project:

--
fa5da7d5478649d11321dcac9f867b0a57e4798a by Dmitry Volodin <mr.molkree@gmail.com>:

fix typos in compiler dir

--
4d3c9f047f7ecb8ab299f1bf28a86fd39096eee7 by Dmitry Volodin <mr.molkree@gmail.com>:

fix one test as "atleast" in it comes from Bazel

--
9440ebaaa9fc4a735f7f72f0c8f0de4ec58afbd6 by Dmitry Volodin <mr.molkree@gmail.com>:

a bit more

PiperOrigin-RevId: 340819994
2020-11-05 03:31:54 -08:00
Alexander Belyaev 3d930d08c2 [HLO] Delete LHLO memref cast ops and migrate to STD ones.
PiperOrigin-RevId: 340663578
2020-11-04 09:26:34 -08:00