Commit Graph

281 Commits

Author SHA1 Message Date
Benjamin Kramer d77b556822 [MLIR][MHLO] Allow recursion in the shape_of mover
This allows it to push shape_of over a chain of ops all the way to the top.

PiperOrigin-RevId: 362249009
2021-03-11 02:52:21 -08:00
Benjamin Kramer 67a770e4e0 [HLO:MLIR] Make binary op type reification emit shape_of instead of tensor ops
This gives cleaner code and allows shape optimizations to happen on the result.

PiperOrigin-RevId: 362242975
2021-03-11 02:01:35 -08:00
Rahul Joshi 9902e6ee32 [HLO] Add LMHLO CollectivePermute verification.
- Extract verification of source target pairs attached to collective permute into a common
  helper function and use that to verify both MHLO and LMHLO variants.
- Change MlirGpuTestBase::ParseMlirModule to allow returning back a failure, and use
  that to update the mlir_gpu_compile_test to check the new behavior.

PiperOrigin-RevId: 362156962
2021-03-10 15:37:12 -08:00
A. Unique TensorFlower c217a6ef61 [MHLO] Add pass to move up dynamic broadcasts for fusion
For now, the pass only reifies the required shape computations. Moving
broadcasts will follow to allow for fusion across them.

PiperOrigin-RevId: 362033715
2021-03-10 06:21:57 -08:00
Stephan Herhut cabd4d9a06 Canonicalize dynamic_broadcast_in_dim to own shape with rank narrowing on the shape to a corresponding tensor.cast.
PiperOrigin-RevId: 362028291
2021-03-10 05:43:54 -08:00
A. Unique TensorFlower 218476128e [MLIR][KernelGen] Fix zeta lowering at poles
Return nan at zeta poles or inf where the limit is defined. Also test the kernel
based on the series representation of zeta.

PiperOrigin-RevId: 361993482
2021-03-10 01:09:10 -08:00
A. Unique TensorFlower 55eda81407 [MLIR][HLO] Reify shape extents as `index` values
PiperOrigin-RevId: 361519167
2021-03-08 02:42:47 -08:00
A. Unique TensorFlower 39650a5d5a Remove rank 1 specialization from TransformUnrankedHloPass.
For binary ops, we already special-case rank 0 vs rank 1, and same shape. So we
don't need to special-case a maximum rank of 1.

PiperOrigin-RevId: 360891955
2021-03-04 05:24:53 -08:00
Adrian Kuegel 62b357b601 Remove rank 1 specialization from TransformUnrankedHloPass.
For binary ops, we already special-case rank 0 vs rank 1, and same shape. So we
don't need to special-case a maximum rank of 1.

PiperOrigin-RevId: 360881387
2021-03-04 04:04:11 -08:00
Geoffrey Martin-Noble 8687f3e4cf Lower MHLO Dot to type-polymorphic linalg named ops
The linalg named ops are now type polymorphic, so the type-monomorphic
varieties are redundant (and will be deleted soon).

PiperOrigin-RevId: 360509010
2021-03-02 14:00:58 -08:00
Adrian Kuegel 0683db3b24 Legalize MinimumBroadcastShapes op.
Use it in TransformUnrankedHloPass, which allows to reduce the maximum
rank for rank specialized broadcast from 6 to 5.

PiperOrigin-RevId: 360415743
2021-03-02 06:39:01 -08:00
Jacques Pienaar 329b1fd071 Verify compatible shapes in unpack verification rather than exact
Previously this would be too strict and fail if dynamic and static dims were
compared. Dynamic/unknown are treated as "maybe equal" to a static value without further info, so at this layer don't flag as invalid unless truly are.

PiperOrigin-RevId: 360189086
2021-03-01 08:00:16 -08:00
Benjamin Kramer e19ccf975e Filter static dimensions from dynamic_broadcast_in_dim's init_tensor
Otherwise we'd generate invalid IR for those cases.

PiperOrigin-RevId: 360144122
2021-03-01 03:03:54 -08:00
Adrian Kuegel e6a1f5f0f9 Add MinimumBroadcastShapesOp to chlo dialect.
This op is useful for rank specialization of broadcasts. Kernel Generator
needs to generate one kernel for each rank, so if we can minimize the rank
of the broadcast shape, we can support more cases with the same number of
special-cased kernels.

PiperOrigin-RevId: 360137827
2021-03-01 02:23:52 -08:00
Hanhan Wang a8f99ee0f5 Fix the shape of linalg.init_tensor in conv op lowering.
The output spatial dims are not as same as the input spatial dims. Only supports
static output spatial dims for now.

PiperOrigin-RevId: 359775479
2021-02-26 09:34:11 -08:00
Hanhan Wang 90f0d7f935 Add support for lowering mhlo.conv to Linalg on tensors.
This pattern only works for normal convolutions. It does not work for depthwise
convolutions. The Linalg conv ops are defined with static rank, so it only
supports 1d/2d/3d cases, which are the most typical cases.

This also refactors out the same check in lmhlo.conv lowering.

PiperOrigin-RevId: 359503527
2021-02-25 05:59:08 -08:00
Hanhan Wang 45a1249fe2 Add support for lowering mhlo.pad to linalg.pad_tensor
The change upstreams the pattern from IREE repo to MHLO repo.

PiperOrigin-RevId: 359481543
2021-02-25 03:00:39 -08:00
Geoffrey Martin-Noble 89f7f2bd65 Lower integer matmuls to linalg
PiperOrigin-RevId: 359306495
2021-02-24 09:45:07 -08:00
Hanhan Wang 475b4a06a5 Add support for lowering mhlo.slice to subtensor.
PiperOrigin-RevId: 359297978
2021-02-24 09:06:09 -08:00
A. Unique TensorFlower ac0552f127 [MLIR][HLO] Remove duplicate `PopulateTransformUnrankedHloPatterns`
PiperOrigin-RevId: 359046173
2021-02-23 07:50:47 -08:00
Rahul Joshi 5adb7c6e12 [MLIR:LHLO] Add optional call target arg mapping to LMHLO CustomCall operations.
- XLA:HLO -> LMHLO conversion drops all token arguments and return values, however
  custom calls that users write still expect to get buffer pointers for these token types.
- To be able to support this, add an optional call target argument mapping attribute to
  LMHLO custom calls. When this attribute is present, it indicates the number of
  arguments and returns that the custom call expects and also indicates which LMHLO
  arg() or output() maps to which arg or result number of the custom call.

PiperOrigin-RevId: 358826664
2021-02-22 08:43:00 -08:00
Benjamin Kramer a9cc1dcfa0 [mlir][hlo] Add basic rank-specialization for select
This just blows up everything to ranked (up to 6) and is probably quite slow.
This is sufficient to make kernelgen compile SelectV2.

PiperOrigin-RevId: 358777728
2021-02-22 02:41:12 -08:00
Benjamin Kramer b42def4612 [mlir][hlo] Refactor rank specialization to allow an arbitrary number of inputs
This actually simplifies the code a bit.

PiperOrigin-RevId: 358201038
2021-02-18 09:53:03 -08:00
Benjamin Kramer ca4034b56e [mlir][hlo] Make select ready for dynamic shapes (ranked only for now)
Move tf.SelectV2 broadcast lowering to a chlo.broadcast_select op, and lower it
to broadcasts on mhlo from there.

PiperOrigin-RevId: 358179975
2021-02-18 08:08:40 -08:00
Adrian Kuegel 37e31f8b26 Lower Expm1 kernel to math.ExpM1.
PiperOrigin-RevId: 358152908
2021-02-18 04:54:23 -08:00
Richard Uhler b579bd5d9e Support dynamic-shaped operand in verification of BroadcastInDim.
Verification of HLO_BroadcastInDimOp was previously failing or crashing if the
operand had a dynamic shape or was unranked. Update the verification code to
allow the operand to be unranked or have dynamic shape.

PiperOrigin-RevId: 358056793
2021-02-17 16:18:09 -08:00
A. Unique TensorFlower 220deb3709 [MLIR][CHLO] Add legalization for `chlo.polygamma` to MHLO
PiperOrigin-RevId: 357954624
2021-02-17 08:33:01 -08:00
A. Unique TensorFlower 81abaf364d [MLIR][MHLO] Add polygamma op to the CHLO dialect
PiperOrigin-RevId: 357724465
2021-02-16 08:32:33 -08:00
Adrian Kuegel b594254c79 [mhlo] Lower int->bool to a comparison with zero
This matches what TF (and C++) do in this case.

PiperOrigin-RevId: 357566262
2021-02-15 06:38:09 -08:00
Benjamin Kramer 240a44de82 [mhlo] Lower int->int cast to sign extension instead of zero extension
Signless does not mean unsigned here. Currently mhlo only has signed types.

PiperOrigin-RevId: 357561712
2021-02-15 05:58:47 -08:00
Adrian Kuegel 8672735e9a [mhlo] Lower float->bool to a comparison with zero
This matches what TF (and C++) do in this case.

PiperOrigin-RevId: 357553098
2021-02-15 04:36:36 -08:00
A. Unique TensorFlower 89d81adf6d [mhlo] Lower float->bool to a comparison with zero
This matches what TF (and C++) do in this case.

PiperOrigin-RevId: 357541594
2021-02-15 03:11:56 -08:00
Benjamin Kramer 3e80d91e73 [mhlo] Lower float->bool to a comparison with zero
This matches what TF (and C++) do in this case.

PiperOrigin-RevId: 357534118
2021-02-15 02:17:19 -08:00
Adrian Kuegel 824bc9c425 Improve broadcast transformation to treat dynamic shapes with 1 element as scalar.
A shape that contains exactly one element is effectively a scalar. This leads
to a speedup in cases where we have a binary op with one operand that is
effectively a scalar, because we can use the fast path.

PiperOrigin-RevId: 357515552
2021-02-14 23:25:41 -08:00
A. Unique TensorFlower 4060a86fe2 Integrate LLVM at llvm/llvm-project@2bfe27da17
Updates LLVM usage to match
[2bfe27da171e](https://github.com/llvm/llvm-project/commit/2bfe27da171e)

PiperOrigin-RevId: 357196336
2021-02-12 08:32:03 -08:00
Tim Shen 6fa6974e8d [XLA/GPU] Plumb through Bitcast op for LMHLO.
Also remove BitcastOp. XLA bitcast requires the input buffer to alias the output buffer, which makes bitcast always a no-op.

PiperOrigin-RevId: 356884383
2021-02-10 19:45:40 -08:00
Alexander Belyaev 36e04d92c0 [KERNEL_GEN] Add a pattern to bufferize `mhlo.reshape(<unranked_tensor>)`.
PiperOrigin-RevId: 356720899
2021-02-10 06:32:21 -08:00
A. Unique TensorFlower 4a29ca3b1d Add layout to mhlo::InfeedOp td.
PiperOrigin-RevId: 356286875
2021-02-08 09:48:14 -08:00
Tres Popp d086b8a0ec Correct HLO atan2 lowering in cases of -inf and -0 inputs.
This is being done by just removing the approximation and lowering to atan2 lib calls later to make the implementation the same as XLA. Note that if the approximation is brought back later, it can be fixed by changing the IR checking `less-than(X, 0)` to `less-than(copysign(X, 1), 0)`

PiperOrigin-RevId: 356253941
2021-02-08 06:58:04 -08:00
A. Unique TensorFlower 2aa8a90c69 Integrate LLVM at llvm/llvm-project@a1a1d338e9
Updates LLVM usage to match
[a1a1d338e99d](https://github.com/llvm/llvm-project/commit/a1a1d338e99d)

PiperOrigin-RevId: 355927079
2021-02-05 14:20:29 -08:00
Rahul Joshi b251712b1d [XLA:GPU] Add conversion from HLO -> MLIR LMHLO for TriangularSolve
- Also add layout attributes for inputs and output for error checking.

PiperOrigin-RevId: 355863625
2021-02-05 09:18:02 -08:00
A. Unique TensorFlower 99bc05f2e4 Integrate LLVM at llvm/llvm-project@91e7a17133
Updates LLVM usage to match
[91e7a1713332](https://github.com/llvm/llvm-project/commit/91e7a1713332)

PiperOrigin-RevId: 355702100
2021-02-04 13:42:31 -08:00
Mahesh Ravishankar 44d0464d16 Use linalg.fill on tensors instead of tensor.generate in MHLO -> Linalg conversion.
linalg.fill on tensors is a structured op that allows use tile + fuse
to reduce the fill overhead.

PiperOrigin-RevId: 355490400
2021-02-03 15:03:49 -08:00
Stephan Herhut 6cd1875ee4 Implement lowering of chlo::zeta to mhlo dialect.
PiperOrigin-RevId: 355395581
2021-02-03 07:50:05 -08:00
A. Unique TensorFlower 04110a4b1c Integrate LLVM at llvm/llvm-project@67dfe9c8d7
Updates LLVM usage to match
[67dfe9c8d70c](https://github.com/llvm/llvm-project/commit/67dfe9c8d70c)

PiperOrigin-RevId: 355235205
2021-02-02 13:09:20 -08:00
Tres Popp ae722a883f Improve performance of lowered chlo.pow with integers
The new lowering takes 6 iterations of a loop always rather than iterating the exponent's number of times.

PiperOrigin-RevId: 355131133
2021-02-02 03:28:38 -08:00
A. Unique TensorFlower f40ccc5b4b [MLIR][CHLO] Add `chlo.digamma` and lowering to MHLO
PiperOrigin-RevId: 355122765
2021-02-02 02:10:17 -08:00
Adrian Kuegel c2115f56c7 Integrate LLVM at llvm/llvm-project@8f7f2c4211
Updates LLVM usage to match
[8f7f2c4211ca](https://github.com/llvm/llvm-project/commit/8f7f2c4211ca)

PiperOrigin-RevId: 355120697
2021-02-02 01:54:32 -08:00
Adrian Kuegel 96f8771ed7 Add MLIR generated kernel for Angle kernel.
This also requires a canonicalization pattern to remove a redundant dynamic
reshape from rank 1 to rank 1.

PiperOrigin-RevId: 355113135
2021-02-02 00:47:20 -08:00
Rahul Joshi 8e3890e8e8 [MLIR:HLO] Add AllGather and AllToAll operations to LMHLO dialect.
- Use a common base class to for AllReduce, AllGather, and AllToAll in the ODS spec.
- Add basic verification for replica groups attribute.

PiperOrigin-RevId: 354969654
2021-02-01 10:23:46 -08:00
Stephan Herhut e61ef86fdb Add zeta and broadcasting_zeta to chlo dialect.
PiperOrigin-RevId: 354500879
2021-01-29 03:22:52 -08:00
Hanhan Wang 30ce82790d Upstream mhlo.reduce lowering to Linalg to MHLO repo.
In IREE, we use indexed generic op to handle the initial value. However, we
lower it to a generic op that carries an init_tensor here, and leave the handle
of initialization problem to later passes.

PiperOrigin-RevId: 354294807
2021-01-28 05:46:09 -08:00
Lei Zhang 39589add22 Use the correct shape when converting mhlo.reshape
If mhlo.reshape is not purely collapsing some consecutive operand
dimensions into result dimensions, we will generate two linalg
reshape op for it: the first one collapses all operand dimensions
into one dimension, and the second one expands it to all result
dimensions. For this case, the number of collapsed/expanded dimensions
should be coming strictly from the operand/result. It is different
from the case where we can generate one linalg reshape. For that case,
the reassociation map should have rank equal to the largest among
operand/result shape.

PiperOrigin-RevId: 354293826
2021-01-28 05:37:54 -08:00
A. Unique TensorFlower e0a7be7fb1 [MLIR][CHLO] Add `chlo.lgamma` and lowering to `hlo`
PiperOrigin-RevId: 354287316
2021-01-28 04:35:03 -08:00
A. Unique TensorFlower d77c9ad6fa [MLIR][CHLO] Add `is_inf`, `is_pos_inf`, and `is_neg_inf` to CHLO dialect
Also add the respective lowerings to MHLO.

PiperOrigin-RevId: 354101955
2021-01-27 09:00:56 -08:00
Rahul Joshi 44deae2aa1 [MLIR:HLO] Extend AllReduce to support multiple inputs and results (to model tuples).
- Instead of SameTypeOperands, add custom verification to check if operands and
  results pairwise have the same type.

PiperOrigin-RevId: 353986341
2021-01-26 17:25:22 -08:00
Benjamin Kramer f6b24a6d54 [mlir][hlo] Make min/max always propagate NaNs
This is the right behavior for TF and JAX and matches what TF does on GPU. It
doesn't match TF on CPU, but that's really a TF bug.

PiperOrigin-RevId: 353657779
2021-01-25 09:04:16 -08:00
A. Unique TensorFlower b1438eebcb [mlir][hlo] Make min/max always propagate NaNs
This is the right behavior for TF and JAX and matches what TF does on GPU. It
doesn't match TF on CPU, but that's really a TF bug.

PiperOrigin-RevId: 353628258
2021-01-25 05:43:15 -08:00
Benjamin Kramer 6af4bccfde [mlir][hlo] Make min/max always propagate NaNs
This is the right behavior for TF and JAX and matches what TF does on GPU. It
doesn't match TF on CPU, but that's really a TF bug.

PiperOrigin-RevId: 353624935
2021-01-25 05:15:24 -08:00
A. Unique TensorFlower ae2d46414d [MLIR][KernelGen] Add erfc kernel for f16
PiperOrigin-RevId: 353209468
2021-01-22 03:38:30 -08:00
A. Unique TensorFlower ef8ccdaebc [MLIR] Add mhlo.logistic lowering to linalg
PiperOrigin-RevId: 353205440
2021-01-22 03:03:16 -08:00
A. Unique TensorFlower c846f925d4 [MLIR][KernelGen] Add chlo.erfc lowering for f32
PiperOrigin-RevId: 353201886
2021-01-22 02:33:21 -08:00
A. Unique TensorFlower 56758a9562 [MLIR][KernelGen] Lower mhlo.log_plus_one to std.log1p
PiperOrigin-RevId: 353200069
2021-01-22 02:18:32 -08:00
A. Unique TensorFlower 1a37078132 [MLIR][KernelGen] Add chlo.erfc lowerings for f64
PiperOrigin-RevId: 352993223
2021-01-21 04:42:56 -08:00
A. Unique TensorFlower bec2e625a2 [MLIR][KernelGen] Add approximation lowering for mhlo.erf operation on f64
PiperOrigin-RevId: 352977456
2021-01-21 02:48:43 -08:00
Alexander Belyaev 7aa64ee0b7 [MLIR] Migrate TF from STD complex ops to ComplexDialect.
PiperOrigin-RevId: 352966408
2021-01-21 01:22:25 -08:00
Hanhan Wang 46112c95c6 Use `uitofp` when converting a boolean to floating-point.
It was lowered to `sitofp` which resulted in `-1.0`.

PiperOrigin-RevId: 352958489
2021-01-21 00:15:30 -08:00
Stephan Herhut 70a351f301 Add chlo.acosh operation and associated lowerings.
PiperOrigin-RevId: 352839289
2021-01-20 11:43:44 -08:00
Tres Popp ba0346b071 Integrate LLVM at llvm/llvm-project@96ef4f307d
Updates LLVM usage to match
[96ef4f307df2](https://github.com/llvm/llvm-project/commit/96ef4f307df2)

PiperOrigin-RevId: 352786460
2021-01-20 07:09:47 -08:00
A. Unique TensorFlower ec5f5667e1 [MLIR][KernelGen] Add `tf.Asinh` kernels and complete their lowerings
PiperOrigin-RevId: 352773540
2021-01-20 05:31:15 -08:00
A. Unique TensorFlower 96fb617413 [MLIR][KernelGen] Add erf kernel and missing lowering for f16 type
PiperOrigin-RevId: 352416184
2021-01-18 08:21:15 -08:00
Tres Popp ba2ee556f1 Handle negative exponents for lowering of hlo.pow
PiperOrigin-RevId: 352382812
2021-01-18 03:47:28 -08:00
A. Unique TensorFlower 3763740910 [MLIR][KernelGen] Add erf kernel for f32 arguments and missing lowerings
PiperOrigin-RevId: 352381016
2021-01-18 03:35:13 -08:00
A. Unique TensorFlower bcdb3c3548 [MLIR] Lower mhlo.clamp to linalg
PiperOrigin-RevId: 351998800
2021-01-15 06:45:38 -08:00
A. Unique TensorFlower 9a1abaa212 Integrate LLVM at llvm/llvm-project@e2d7d3cb0e
Updates LLVM usage to match
[e2d7d3cb0ead](https://github.com/llvm/llvm-project/commit/e2d7d3cb0ead)

PiperOrigin-RevId: 351915841
2021-01-14 18:05:33 -08:00
Hanhan Wang 300a7c11ce Upstream mhlo.dot_general lowering to Linalg to MHLO repo
PiperOrigin-RevId: 351514250
2021-01-12 22:08:46 -08:00
Hanhan Wang 8f58f844e5 Upstream mhlo.dot lowering to Linalg to MHLO repo.
We prototyped the lowering from mhlo.dot to linalg.matmul in IREE. Since Linalg
now supports matmul in tensors world, we can move the lowering logic to tensors
world, and upstream to legalize_to_linalg.cc. The patch lowers the mhlo.dot to
the linalg.matmul/matvec/dot in tensors world.

PiperOrigin-RevId: 351184911
2021-01-11 10:35:24 -08:00
Alexander Belyaev 180f917446 [KERNEL_GEN] Add a pattern for hlo.dyn_broadcast->linalg to enable is_inf kernel.
PiperOrigin-RevId: 351179620
2021-01-11 10:13:31 -08:00
Alexander Belyaev ecf1bf5132 [KERNEL_GEN] Add a canonicalization pattern to drop a redundant dynamic reshape.
PiperOrigin-RevId: 351141868
2021-01-11 06:38:03 -08:00
Alexander Belyaev 6c42f54298 [KERNEL_GEN] Restrict broadcast -> reshape canonicalization to identity dims.
This is needed to avoid the case, when the broadcast_in_dims also performs permutation.

PiperOrigin-RevId: 350650342
2021-01-07 15:30:28 -08:00
Alexander Belyaev 095dc28e5c [KERNEL_GEN] Add canonicalizaton pattern to drop a redundant broadcast op.
PiperOrigin-RevId: 350105790
2021-01-05 03:01:00 -08:00
A. Unique TensorFlower b0bf2ef45b Integrate LLVM at llvm/llvm-project@c3acda0798
Updates LLVM usage to match
[c3acda0798f9](https://github.com/llvm/llvm-project/commit/c3acda0798f9)

PiperOrigin-RevId: 348896724
2020-12-23 23:53:54 -08:00
Stephan Herhut ccdd07f8e4 Prepare to remove tensor_load and tensor_store special handling from hlo to lhlo legalization.
This updates the tests to no longer rely on tensor_store. Once all users of this behavior have adopted, the tensor_store support will be removed.

PiperOrigin-RevId: 348624899
2020-12-22 06:29:12 -08:00
Tres Popp a42213b870 Define lowering of [l]mhlo.pow.
For floating point operations, this uses std.pow.
For integer operations, this lowers to a loop.
This adds a dependency on scf.

PiperOrigin-RevId: 348537232
2020-12-21 15:27:40 -08:00
Smit Hinsu 737d15ded5 Handle operands with zero elements in HLO PadOp folder
PiperOrigin-RevId: 348034821
2020-12-17 09:27:36 -08:00
Rahul Joshi 8134bff98d [XLA:GPU] Add layout attributes to LHLO_GPU Convolution operations.
- MLIR MemRefs do not preserve layout information correctly when unit dimensions
  are involved. Operations like convolution that use cuDNN however need the correct
  layout to be preserved so that we do not end up creating an incompatible combination
  of input/filter/output layout that is not supported by cuDNN.
- Add these layouts to convolution attributes in the form of I32ArrayAttr for representing
  the layout in "minor_to_major" form similar to XLA.

PiperOrigin-RevId: 348034757
2020-12-17 09:26:28 -08:00
Adrian Kuegel 1f244c3e2c Fix SignOp lowering for floating point values.
It didn't return 0 for 0.0 and -0.0.
Currently we emit -0.0 for -0.0 which is correct according to the HLO dialect.
For the TF_SignOp we should emit 0.0 in that case, we will leave that as a TODO.
Enable the tests which work now, and add another one for Int64.
Also improve the registration code, we should not register the Int32 kernel.

PiperOrigin-RevId: 347981124
2020-12-17 01:45:54 -08:00
A. Unique TensorFlower 5da9190dd9 Integrate LLVM at llvm/llvm-project@0cf7e4b252
Updates LLVM usage to match
[0cf7e4b252fe](https://github.com/llvm/llvm-project/commit/0cf7e4b252fe)

PiperOrigin-RevId: 347948887
2020-12-16 20:30:17 -08:00
Alexander Belyaev 65222893ae [KERNEL_GEN] Convert LHLO AddOp, SubOp (ComplexType) to complex ops.
PiperOrigin-RevId: 347805898
2020-12-16 05:45:06 -08:00
Alexander Belyaev e6e8920921 [KERNEL_GEN] Switch the pipeline to Linalg-on-Tensors.
PiperOrigin-RevId: 347781190
2020-12-16 01:51:15 -08:00
A. Unique TensorFlower f0c2695d31 Fix SignOp lowering for floating point values.
It didn't return 0 for 0.0 and -0.0.
Currently we emit -0.0 for -0.0 which is correct according to the HLO dialect.
For the TF_SignOp we should emit 0.0 in that case, we will leave that as a TODO.
Enable the tests which work now, and add another one for Int64.
Also improve the registration code, we should not register the Int32 kernel.

PiperOrigin-RevId: 347602378
2020-12-15 06:49:48 -08:00
Alexander Belyaev ddda2699fb [KERNEL_GEN] Switch the pipeline to Linalg-on-Tensors.
PiperOrigin-RevId: 347600145
2020-12-15 06:32:25 -08:00
Adrian Kuegel 79fa36bcbc Fix SignOp lowering for floating point values.
It didn't return 0 for 0.0 and -0.0.
Currently we emit -0.0 for -0.0 which is correct according to the HLO dialect.
For the TF_SignOp we should emit 0.0 in that case, we will leave that as a TODO.
Enable the tests which work now, and add another one for Int64.
Also improve the registration code, we should not register the Int32 kernel.

PiperOrigin-RevId: 347590340
2020-12-15 05:12:48 -08:00
Alexander Belyaev 8b35a75d4a [KERNEL_GEN] Switch the pipeline to Linalg-on-Tensors.
PiperOrigin-RevId: 347368063
2020-12-14 05:46:47 -08:00
Benjamin Kramer 9930c20c31 [mlir][hlo] Fix lowering of NE comparison. It should return true if either side is NaN
PiperOrigin-RevId: 346988987
2020-12-11 06:46:14 -08:00
Smit Hinsu ab6ee11813 Fix folding of HLO SliceOp with zero elements
This was causing division by zero in this case.

PiperOrigin-RevId: 346920942
2020-12-10 20:22:48 -08:00
Rahul Joshi f232da1f9d [MLIR:HLO] Add window_reversal attribute to convolution attributes.
- Add this attribute to match the corresponding XLA HLO attribute on convolution
  operations.
- A true value indicates a reversal of the corresponding kernel spatial dimension.
- Since XLA builder does not support this attribute, use a custom HLO converted to map
  from mlir::mhlo::ConvOp to XLA.

PiperOrigin-RevId: 346891737
2020-12-10 16:39:19 -08:00
Alexander Belyaev c36afd275e [HLO] Add a pattern for HLO ConstOp to HLO -> Linalg conversion.
PiperOrigin-RevId: 346718273
2020-12-09 23:24:57 -08:00
Stephan Herhut c3790af758 Add plumbing for or and xor to hlo to lhlo and linalg lowerings.
PiperOrigin-RevId: 346311314
2020-12-08 06:39:02 -08:00
Benjamin Kramer 5235eceea0 Lower mhlo shifts to linalg
PiperOrigin-RevId: 346161253
2020-12-07 13:02:32 -08:00