Take advantage of the fact that scalars are already ranked and that they are
neutral elements to broadcasting. Do not reshape scalars, do not consider them
for broadcasting, and materialize ranked operations on scalars accordingly.
PiperOrigin-RevId: 375968371
Rank specialization cases can be applied to all argument tensors of smaller
ranks than the expected maximum rank. This is crucial if all operands are
effectively scalars and the maximum reduced rank is 0.
PiperOrigin-RevId: 375712020
We can lower it to the DivOp in the complex dialect.
Also add tests to hlo-legalize-to-linalg.mlir for CompareOp lowering of complex
types. These were forgotten in a previous commit.
PiperOrigin-RevId: 375669125
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/49454
The new interface is more safe to be used during dialect conversion
(e.g. converting from tensor world to buffer world).
Copybara import of the project:
--
a6968072d59bec3c3bbaef0121d297e807c37c91 by Wenyi Zhao <reyizero@gmail.com>:
[MLIR][DISC] Upgrade to use the new `reifyReturnTypeShapes` interface.
The new interface is more safe to be used during dialect conversion
(e.g. converting from tensor world to buffer world).
--
55e7c6b7f2f99b99e226645a57e2433fae3e90ed by Wenyi Zhao <reyizero@gmail.com>:
minor fix
PiperOrigin-RevId: 375500273
This only works for updating tensors, not add/min/max computations. It requires
the index depth to be 1 because of the limitation in Linalg. We can not compare
multiple indices without packing indices.
PiperOrigin-RevId: 375137721
For rank specialization clusters that have only two operands, we can materialize
two extra cases in which either of them is a scalar. This avoids redundant index
computations in these cases.
PiperOrigin-RevId: 375037390
* The op defines this to be index, any integer, or pred (i1).
* Many TensorFlow legalizations produce integers for the shape.
PiperOrigin-RevId: 374566113
* The former is typically invariant regardless of backend.
* The latter may need to be done differently depending on capabilities of the lowering target.
PiperOrigin-RevId: 374492924
Add lowering pattern for rank specialization clusters with more than one
non-scalar operand. The lowering resembles that of the `TransformUnrankedHlo`
pass and switches cases for maximal ranks from 1 through 8.
PiperOrigin-RevId: 374377002
The pattern can be generalized to also rank specialize operations with a single
non-scalar operand. Also extract helper functions that can be reused in
following specializations.
PiperOrigin-RevId: 374198381
Also cluster operations that operate on same shape operands. These implicitly
satisfy the broadcasting semantics requirement. Also, add test cases for some
cases that appear in the current MLIR-generated kernels.
PiperOrigin-RevId: 374191950
Add a pass to cluster unranked C/HLO operations in one
`chlo.rank_specialization_cluster` op. The C/HLO operations are moved to the
body of the operation. Later passes can use this to rank-specialize all these
operations together.
PiperOrigin-RevId: 373336725
This strips away the signedness with a type converter, using unrealized
conversion casts. The rest is mostly mechanically pushing the original op down
the pipeline so lowerings can see the original types.
Signed types stay signless for now. This can be changed in the HLO bridge later.
I did a pass over all ops and added unsigned lowerings where they were missing.
There may be more.
Currently the lowering will die at a later stage because it doesn't understand
the unrealized casts.
PiperOrigin-RevId: 371077494