For floating point operations, this uses std.pow.
For integer operations, this lowers to a loop.
This adds a dependency on scf.
PiperOrigin-RevId: 348537232
It can happen that a lowering for a certain type is not implemented yet.
We should not segfault in such a case, but instead return a failure().
PiperOrigin-RevId: 347801106
- Add this attribute to match the corresponding XLA HLO attribute on convolution
operations.
- A true value indicates a reversal of the corresponding kernel spatial dimension.
- Since XLA builder does not support this attribute, use a custom HLO converted to map
from mlir::mhlo::ConvOp to XLA.
PiperOrigin-RevId: 346891737
Doesn't support tensors right now, as it's somewhat hairy to support both at
the same time. Since we use a generic lowering the result is messy
and needs a mem2reg pass to eliminate extra load/store/allocas.
PiperOrigin-RevId: 339562971
Shuffle files around, use TableGen to register passes, and introduce
a `mlir-hlo-opt.cpp` file to hold the main entry point of the -opt tool
and stop relying on static registration for dialect/passes.
PiperOrigin-RevId: 323674455
Imported from GitHub PR https://github.com/tensorflow/tensorflow/pull/40925
…ad of std.store
The xla_lhlo.const lowering uses std.store to store a constant to
0-d memrefs. Update it to affine.store since such an access is trivially
affine (no indices). An affine.store can always be lowered to std.store.
Copybara import of the project:
--
9e18ede72fbbca107177bd742921e4cbf77adc82 by Uday Bondhugula <uday@polymagelabs.com>:
[MLIR] Update lhlo.const to linalg lowering to use affine.store instead of std.store
The xla_lhlo.const lowering uses std.store to store a constant to
0-d memrefs. Update it to affine.store since such an access is trivially
affine (no indices). An affine.store can always be lowered to std.store.
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/tensorflow/pull/40925 from polymage-labs:lhlo_to_linalg_affine_store 9e18ede72fbbca107177bd742921e4cbf77adc82
PiperOrigin-RevId: 320623152