// RUN: mlir-hlo-opt -hlo-legalize-to-lhlo -buffer-placement -split-input-file %s -o - | FILECHECK_OPTS="" FileCheck --check-prefixes=PRE,BOTH %s // RUN: mlir-hlo-opt -hlo-legalize-to-lhlo=results-escape-function=true -buffer-placement -split-input-file %s -o - | FILECHECK_OPTS="" FileCheck --check-prefixes=ESC,BOTH %s // BOTH-LABEL: func @attrs func @attrs_copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.exponential"(%tensor_operand) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.exponential"(%{{.*}}, %{{.*}}) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- func @return_func(%arg0: tensor<4xf32>) -> tensor<4xf32> { return %arg0 : tensor<4xf32> } // PRE: (%[[ARG0:.*]]: [[TYPE:.*]], %[[RESULT:.*]]: [[TYPE]]) // PRE-NEXT: "lmhlo.copy"(%[[ARG0]], %[[RESULT]]) : ([[TYPE]], [[TYPE]]) -> () // PRE-NEXT: return // ESC: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]] // ESC-NOT: "lmhlo.copy" // ESC-NEXT: return %[[ARG0]] // ----- // BOTH-LABEL: func @func_op_long func @func_op_long(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { %1 = mhlo.maximum %arg0, %arg1 : tensor<4xf32> %2 = mhlo.add %arg0, %1 : tensor<4xf32> %3 = mhlo.minimum %arg0, %arg1 : tensor<4xf32> %4 = mhlo.subtract %arg1, %3 : tensor<4xf32> %5 = mhlo.multiply %2, %4 : tensor<4xf32> return %5 : tensor<4xf32> } // PRE: (%[[NEW_ARG0:.*]]: memref<4xf32>, %[[NEW_ARG1:.*]]: memref<4xf32>, %[[RESULT:.*]]: memref<4xf32>) // ESC: (%[[NEW_ARG0:.*]]: memref<4xf32>, %[[NEW_ARG1:.*]]: memref<4xf32>) -> memref<4xf32> // BOTH-NEXT: %[[MAX_RESULT:.*]] = alloc() : memref<4xf32> // BOTH-NEXT: "lmhlo.maximum"(%[[NEW_ARG0]], %[[NEW_ARG1]], %[[MAX_RESULT]]) // BOTH-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<4xf32> // BOTH-NEXT: "lmhlo.add"(%[[NEW_ARG0]], %[[MAX_RESULT]], %[[ADD_RESULT]]) // BOTH-NEXT: dealloc %[[MAX_RESULT]] : memref<4xf32> // BOTH-NEXT: %[[MIN_RESULT:.*]] = alloc() : memref<4xf32> // BOTH-NEXT: "lmhlo.minimum"(%[[NEW_ARG0]], %[[NEW_ARG1]], %[[MIN_RESULT]]) // BOTH-NEXT: %[[SUB_RESULT:.*]] = alloc() : memref<4xf32> //  BOTH-NEXT: "lmhlo.subtract"(%[[NEW_ARG1]], %[[MIN_RESULT]], %[[SUB_RESULT]]) // BOTH-NEXT: dealloc %[[MIN_RESULT]] : memref<4xf32> // BOTH-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<4xf32> // BOTH-NEXT: "lmhlo.multiply"(%[[ADD_RESULT]], %[[SUB_RESULT]], %[[MUL_RESULT]]) // BOTH-NEXT: dealloc %[[SUB_RESULT]] : memref<4xf32> // BOTH-NEXT: dealloc %[[ADD_RESULT]] : memref<4xf32> // PRE-NEXT: "lmhlo.copy"(%[[MUL_RESULT]], %[[RESULT]]) : (memref<4xf32>, memref<4xf32>) -> () // PRE-NEXT: dealloc %[[MUL_RESULT]] : memref<4xf32> // PRE-NEXT: return // ESC-NEXT: return %[[MUL_RESULT]] : memref<4xf32> // ----- // BOTH-LABEL: func @fusion func @fusion(%multiplier: memref<2x2xf32>, %summand_1: memref<2x2xf32>, %summand_2: memref<2x2xf32>, %result: memref<2x2xf32>) { // BOTH: (%{{.*}}: {{.*}}, {{.*}}: {{.*}}, {{.*}}: {{.*}}, %[[RESULT:.*]]: {{.*}}) // BOTH-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<2x2xf32> %tensor_summand_1 = tensor_load %summand_1 : memref<2x2xf32> %tensor_summand_2 = tensor_load %summand_2 : memref<2x2xf32> %sum = "mhlo.add"(%tensor_summand_1, %tensor_summand_2) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH-NEXT: "lmhlo.add"(%{{.*}}, %{{.*}}, %[[ADD_RESULT]]) // BOTH-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<2x2xf32> %tensor_multiplier = tensor_load %multiplier : memref<2x2xf32> %tensor_result = "mhlo.multiply"(%sum, %tensor_multiplier) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH-NEXT: "lmhlo.multiply"(%[[ADD_RESULT]], %{{.*}}, %[[MUL_RESULT]]) // BOTH-NEXT: dealloc %[[ADD_RESULT]] : memref<2x2xf32> // BOTH-NEXT: "lmhlo.copy"(%[[MUL_RESULT]], %[[RESULT]]) tensor_store %tensor_result, %result : memref<2x2xf32> // BOTH-NEXT: dealloc %[[MUL_RESULT]] : memref<2x2xf32> // BOTH-NEXT: return return } // ----- // BOTH-LABEL: func @copy func @copy(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.copy"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.copy"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @exp func @exp(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.exponential"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.exponential"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @log func @log(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.log"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.log"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @select func @select(%pred: memref<2x2xi1>, %lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_pred = tensor_load %pred : memref<2x2xi1> %tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_result = "mhlo.select"(%tensor_pred, %tensor_lhs, %tensor_rhs) : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.select"(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @compare func @compare(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xi1>) { %tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_result = "mhlo.compare"(%tensor_lhs, %tensor_rhs) {comparison_direction = "EQ"} : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> // BOTH: "lmhlo.compare"(%{{.*}}, %{{.*}}, %{{.*}}) {comparison_direction = "EQ"} tensor_store %tensor_result, %result : memref<2x2xi1> return } // ----- // BOTH-LABEL: func @broadcast func @broadcast(%operand: memref<5xf32>, %result: memref<10x5xf32>) { %tensor_operand = tensor_load %operand : memref<5xf32> %tensor_result = "mhlo.broadcast_in_dim"(%tensor_operand) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<5xf32>) -> tensor<10x5xf32> // BOTH: "lmhlo.broadcast_in_dim"(%{{.*}}, %{{.*}}) {broadcast_dimensions = dense<1> : tensor<1xi64>} tensor_store %tensor_result, %result : memref<10x5xf32> return } // ----- func @external_func() -> tensor<3xi64> // BOTH: #[[MAP:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s0 + d1 * s1)> // BOTH-LABEL: func @dyn_broadcast func @dyn_broadcast(%operand: memref) { // BOTH-SAME: (%[[OPERAND:.*]]: memref) %tensor_operand = tensor_load %operand : memref %c1 = constant 1 : i64 %shape = tensor_from_elements %c1, %c1, %c1 : tensor<3xi64> %tensor_result = "mhlo.dynamic_broadcast_in_dim"(%tensor_operand, %shape) { broadcast_dimensions = dense<[1, 2]> : tensor<2xi64> } : (tensor, tensor<3xi64>) -> tensor // BOTH: %[[SHAPE:.*]] = tensor_from_elements // BOTH: %[[C0:.*]] = constant 0 : index // BOTH: %[[EL0:.*]] = extract_element %[[SHAPE]][%[[C0]]] : tensor<3xi64> // BOTH: %[[IC0:.*]] = index_cast %[[EL0]] : i64 to index // BOTH: %[[C1:.*]] = constant 1 : index // BOTH: %[[EL1:.*]] = extract_element %[[SHAPE]][%[[C1]]] : tensor<3xi64> // BOTH: %[[IC1:.*]] = index_cast %[[EL1]] : i64 to index // BOTH: %[[C2:.*]] = constant 2 : index // BOTH: %[[EL2:.*]] = extract_element %[[SHAPE]][%[[C2]]] : tensor<3xi64> // BOTH: %[[IC2:.*]] = index_cast %[[EL2]] : i64 to index // BOTH: %[[RESULT:.*]] = alloc(%[[IC0]], %[[IC1]], %[[IC2]]) // BOTH: %[[C0_:.*]] = constant 0 : index // BOTH: %[[C1_:.*]] = constant 1 : index // BOTH: %[[C1__:.*]] = constant 1 : index // BOTH: %[[EL1_:.*]] = extract_element %[[SHAPE]]{{\[}}%[[C1__]]] : tensor<3xi64> // BOTH: %[[C0___:.*]] = constant 0 : index // BOTH: %[[OPERAND_DIM_0:.*]] = dim %[[OPERAND]], %[[C0___]] : memref // BOTH: %[[RESULT_DIM_1:.*]] = index_cast %[[EL1_]] : i64 to index // BOTH: %[[EXPAND_0:.*]] = cmpi "slt", %[[OPERAND_DIM_0]], %[[RESULT_DIM_1]] // BOTH: %[[STRIDE_0:.*]] = select %[[EXPAND_0]], %[[C0_]], %[[C1_]] : index // BOTH: %[[C2_:.*]] = constant 2 : index // BOTH: %[[EL2_:.*]] = extract_element %[[SHAPE]]{{\[}}%[[C2_]]] : tensor<3xi64> // BOTH: %[[C1___:.*]] = constant 1 : index // BOTH: %[[OPERAND_DIM_1:.*]] = dim %[[OPERAND]], %[[C1___]] : memref // BOTH: %[[RESULT_DIM_2:.*]] = index_cast %[[EL2_]] : i64 to index // BOTH: %[[EXPAND_1:.*]] = cmpi "slt", %[[OPERAND_DIM_1]], %[[RESULT_DIM_2]] // BOTH: %[[STRIDE_1:.*]] = select %[[EXPAND_1]], %[[C0_]], %[[C1_]] : index // BOTH: %[[TRANSFORMED_MEMREF:.*]] = lmhlo.dynamic_memref_cast // BOTH-SAME: %[[OPERAND]](%[[RESULT_DIM_1]], %[[RESULT_DIM_2]]) // BOTH-SAME: {{\[}}%[[STRIDE_0]], %[[STRIDE_1]]] // BOTH-SAME: : memref -> memref // BOTH: "lmhlo.broadcast_in_dim"(%[[TRANSFORMED_MEMREF]], %[[RESULT]]) { // BOTH-SAME: broadcast_dimensions = dense<[1, 2]> : tensor<2xi64> // BOTH-SAME: } : (memref, memref) -> () // Do not store the value back to avoid the tensor-store being rewritten to // a copy into the pre-allocated argument. return } // ----- // BOTH-LABEL: func @complex func @complex(%real: memref<2x2xf32>, %imag: memref<2x2xf32>, %result: memref<2x2xcomplex>) { %tensor_real = tensor_load %real : memref<2x2xf32> %tensor_imag = tensor_load %imag : memref<2x2xf32> %tensor_result = "mhlo.complex"(%tensor_real, %tensor_imag) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xcomplex> // BOTH: "lmhlo.complex"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xcomplex> return } // ----- // BOTH-LABEL: func @real func @real(%operand: memref<2x2xcomplex>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xcomplex> %tensor_result = "mhlo.real"(%tensor_operand) : (tensor<2x2xcomplex>) -> tensor<2x2xf32> // BOTH: "lmhlo.real"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @real_dyn func @real_dyn(%operand: memref>, %result: memref) { %tensor_operand = tensor_load %operand : memref> %tensor_result = "mhlo.real"(%tensor_operand) : (tensor>) -> tensor // BOTH: "lmhlo.real"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref return } // ----- // BOTH-LABEL: func @imag func @imag(%operand: memref<2x2xcomplex>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xcomplex> %tensor_result = "mhlo.imag"(%tensor_operand) : (tensor<2x2xcomplex>) -> tensor<2x2xf32> // BOTH: "lmhlo.imag"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @imag_dyn func @imag_dyn(%operand: memref>, %result: memref) { %tensor_operand = tensor_load %operand : memref> %tensor_result = "mhlo.imag"(%tensor_operand) : (tensor>) -> tensor // BOTH: "lmhlo.imag"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref return } // ----- // BOTH-LABEL: func @iota func @iota(%result: memref<10xi32>) { %tensor_result = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<10xi32> // BOTH: "lmhlo.iota"(%{{.*}}) {iota_dimension = 0 : i64} tensor_store %tensor_result, %result : memref<10xi32> return } // ----- // BOTH-LABEL: func @abs func @abs(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.abs"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.abs"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @ceil func @ceil(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.ceil"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.ceil"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @convert func @convert(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.convert"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.copy"(%{{.*}}, %{{.*}}) // BOTH-NOT: tensor_store tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @cos func @cos(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.cosine"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.cosine"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @floor func @floor(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.floor"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.floor"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @neg func @neg(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.negate"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.negate"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @not func @not(%operand: memref<2x2xi32>, %result: memref<2x2xi32>) { %tensor_operand = tensor_load %operand : memref<2x2xi32> %tensor_result = "mhlo.not"(%tensor_operand) : (tensor<2x2xi32>) -> tensor<2x2xi32> // BOTH: "lmhlo.not"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xi32> return } // ----- // BOTH-LABEL: func @rsqrt func @rsqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.rsqrt"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.rsqrt"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @sign func @sign(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.sign"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.sign"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @sqrt func @sqrt(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.sqrt"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.sqrt"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @tanh func @tanh(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.tanh"(%tensor_operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.tanh"(%{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // BOTH-LABEL: func @remainder func @remainder(%lhs: memref<2x2xf32>, %rhs: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_lhs = tensor_load %lhs : memref<2x2xf32> %tensor_rhs = tensor_load %rhs : memref<2x2xf32> %tensor_result = "mhlo.remainder"(%tensor_lhs, %tensor_rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.remainder"(%{{.*}}, %{{.*}}, %{{.*}}) tensor_store %tensor_result, %result : memref<2x2xf32> return } // ----- // Dynamic shape binary element-wise operation. // BOTH-LABEL: func @add_dyn func @add_dyn(%lhs: tensor, %rhs: tensor) { %result = "mhlo.add"(%lhs, %rhs) : (tensor, tensor) -> tensor // BOTH: %[[C0:.*]] = constant 0 : index // BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref // BOTH: %[[IC0:.*]] = index_cast %[[DIM0]] : index to i64 // BOTH: %[[C1:.*]] = constant 1 : index // BOTH: %[[DIM1:.*]] = dim %arg0, %[[C1]] : memref // BOTH: %[[IC1:.*]] = index_cast %[[DIM1]] : index to i64 // BOTH: %[[SHAPE:.*]] = tensor_from_elements %[[IC0]], %[[IC1]] : tensor<2xi64> // BOTH: %[[C0_:.*]] = constant 0 : index // BOTH: %[[EE0:.*]] = extract_element %[[SHAPE]][%[[C0_]]] : tensor<2xi64> // BOTH: %[[ICS0:.*]] = index_cast %[[EE0]] : i64 to index // BOTH: %[[C1_:.*]] = constant 1 : index // BOTH: %[[EE1:.*]] = extract_element %[[SHAPE]][%[[C1_]]] : tensor<2xi64> // BOTH: %[[ICS1:.*]] = index_cast %[[EE1]] : i64 to index // BOTH: %[[RESULT:.*]] = alloc(%[[ICS0]], %[[ICS1]]) // BOTH: "lmhlo.add"(%arg0, %arg1, %[[RESULT]]) : (memref, memref, memref) -> () return } // ----- // Dynamic shape unary element-wise operation. // BOTH-LABEL: func @tanh_dyn func @tanh_dyn(%arg0: tensor) { %result = "mhlo.tanh"(%arg0) : (tensor) -> tensor // BOTH: %[[C0:.*]] = constant 0 : index // BOTH: %[[DIM0:.*]] = dim %arg0, %[[C0]] : memref // BOTH: %[[IC0:.*]] = index_cast %[[DIM0]] : index to i64 // BOTH: %[[C1:.*]] = constant 1 : index // BOTH: %[[DIM1:.*]] = dim %arg0, %[[C1]] : memref // BOTH: %[[IC1:.*]] = index_cast %[[DIM1]] : index to i64 // BOTH: %[[SHAPE:.*]] = tensor_from_elements %[[IC0]], %[[IC1]] : tensor<2xi64> // BOTH: %[[C0_:.*]] = constant 0 : index // BOTH: %[[EE0:.*]] = extract_element %[[SHAPE]][%[[C0_]]] : tensor<2xi64> // BOTH: %[[ICS0:.*]] = index_cast %[[EE0]] : i64 to index // BOTH: %[[C1_:.*]] = constant 1 : index // BOTH: %[[EE1:.*]] = extract_element %[[SHAPE]][%[[C1_]]] : tensor<2xi64> // BOTH: %[[ICS1:.*]] = index_cast %[[EE1]] : i64 to index // BOTH: %[[RESULT:.*]] = alloc(%[[ICS0]], %[[ICS1]]) // BOTH: "lmhlo.tanh"(%arg0, %[[RESULT]]) : (memref, memref) -> () return } // ----- // BOTH-LABEL: func @dot func @dot(%arg0: tensor<1024x1024xf32>) -> tensor<1024x1024xf32> { // PRE-SAME: (%[[ARG0:.*]]: [[TYPE:.*]], %[[RESULT:.*]]: [[TYPE]]) // ESC-SAME: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]] // BOTH-NEXT: %[[ALLOC:.*]] = alloc // BOTH: "lmhlo.dot"(%[[ARG0]], %[[ARG0]], %[[ALLOC]]) : ([[TYPE]], [[TYPE]], [[TYPE]]) -> () %dot = "mhlo.dot"(%arg0, %arg0) : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) -> tensor<1024x1024xf32> // PRE: "lmhlo.copy"(%[[ALLOC]], %[[RESULT]]) // ESC: return %[[ALLOC]] return %dot : tensor<1024x1024xf32> } // ----- // BOTH-LABEL: func @conv func @conv(%input: tensor<3x5x5x3xf32>, %filter : tensor<2x2x3x4xf32>) -> tensor<3x5x5x4xf32> { %c0 = constant 0 : index // BOTH: %[[OUT:.*]] = alloc() : memref<3x5x5x4xf32> // BOTH: "lmhlo.convolution"(%{{.+}}, %{{.+}}, %[[OUT]]) // BOTH-SAME: padding = dense<[ // BOTH-SAME: [0, 1], [0, 1]]> : tensor<2x2xi64> // BOTH-SAME: rhs_dilation = dense<[1, 2]> // BOTH-SAME: window_strides = dense<[2, 1]> %out = "mhlo.convolution"(%filter, %input) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 1 : i64, padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>, rhs_dilation = dense<[1, 2]> : tensor<2xi64>, window_strides = dense<[2, 1]> : tensor<2xi64> } : (tensor<2x2x3x4xf32>, tensor<3x5x5x3xf32>) -> tensor<3x5x5x4xf32> return %out : tensor<3x5x5x4xf32> } // ----- // BOTH-LABEL: func @reduce func @reduce(%arg0: tensor<1x8xf32>, %arg1: tensor) -> tensor<1xf32> { // BOTH: %[[OUT:.*]] = alloc() : memref<1xf32> // BOTH: "lmhlo.reduce"(%{{.+}}, %{{.+}}, %[[OUT]]) ( { // BOTH: ^bb0(%[[ARG1:.*]]: memref, %[[ARG2:.*]]: memref, // BOTH-SAME: %[[ARG3:.*]]: memref): // BOTH: %[[TMP:.*]] = alloc() : memref // BOTH: "lmhlo.add"(%[[ARG1]], %[[ARG2]], %[[TMP]]) // BOTH: "lmhlo.copy"(%[[TMP]], %[[ARG3]]) // BOTH: "lmhlo.terminator"() : () -> () // BOTH: }) {dimensions = dense<1> : tensor<1xi64>} // BOTH-SAME: : (memref<1x8xf32>, memref, memref<1xf32>) -> () %0 = "mhlo.reduce"(%arg0, %arg1) ( { ^bb0(%arg2: tensor, %arg3: tensor): // no predecessors %1 = mhlo.add %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x8xf32>, tensor) -> tensor<1xf32> return %0 : tensor<1xf32> } // ----- // BOTH-LABEL: func @transpose func @transpose(%operand: memref<2x2xf32>, %result: memref<2x2xf32>) { %tensor_operand = tensor_load %operand : memref<2x2xf32> %tensor_result = "mhlo.transpose"(%tensor_operand) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32> // BOTH: "lmhlo.transpose"(%{{.*}}, %{{.*}}) {permutation = dense<[1, 0]> : tensor<2xi64>} // BOTH-NOT: tensor_store tensor_store %tensor_result, %result : memref<2x2xf32> return }