// RUN: mlir-hlo-opt -hlo-legalize-to-lhlo -buffer-hoisting \ // RUN: -buffer-deallocation -split-input-file -cse %s -o - \ // RUN: | FILECHECK_OPTS="" FileCheck %s // CHECK-LABEL: func @attrs func @attrs_copy(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.exponential"(%operand) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.exponential"(%{{.*}}, %{{.*}}) {some_attr_1 = "exp.1", some_attr_2 = dense<1> : tensor<1xi64>} return %result : tensor<2x2xf32> } // ----- func @return_func(%arg0: tensor<4xf32>) -> tensor<4xf32> { return %arg0 : tensor<4xf32> } // CHECK: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]] // CHECK-NEXT: return %[[ARG0]] // ----- // CHECK-LABEL: func @func_op_long func @func_op_long(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> tensor<4xf32> { %1 = mhlo.maximum %arg0, %arg1 : tensor<4xf32> %2 = mhlo.add %arg0, %1 : tensor<4xf32> %3 = mhlo.minimum %arg0, %arg1 : tensor<4xf32> %4 = mhlo.subtract %arg1, %3 : tensor<4xf32> %5 = mhlo.multiply %2, %4 : tensor<4xf32> return %5 : tensor<4xf32> } // CHECK: (%[[NEW_ARG0:.*]]: memref<4xf32>, %[[NEW_ARG1:.*]]: memref<4xf32>) -> memref<4xf32> // CHECK-NEXT: %[[MAX_RESULT:.*]] = alloc() : memref<4xf32> // CHECK-NEXT: "lmhlo.maximum"(%[[NEW_ARG0]], %[[NEW_ARG1]], %[[MAX_RESULT]]) // CHECK-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<4xf32> // CHECK-NEXT: "lmhlo.add"(%[[NEW_ARG0]], %[[MAX_RESULT]], %[[ADD_RESULT]]) // CHECK-NEXT: dealloc %[[MAX_RESULT]] : memref<4xf32> // CHECK-NEXT: %[[MIN_RESULT:.*]] = alloc() : memref<4xf32> // CHECK-NEXT: "lmhlo.minimum"(%[[NEW_ARG0]], %[[NEW_ARG1]], %[[MIN_RESULT]]) // CHECK-NEXT: %[[SUB_RESULT:.*]] = alloc() : memref<4xf32> //  CHECK-NEXT: "lmhlo.subtract"(%[[NEW_ARG1]], %[[MIN_RESULT]], %[[SUB_RESULT]]) // CHECK-NEXT: dealloc %[[MIN_RESULT]] : memref<4xf32> // CHECK-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<4xf32> // CHECK-NEXT: "lmhlo.multiply"(%[[ADD_RESULT]], %[[SUB_RESULT]], %[[MUL_RESULT]]) // CHECK-NEXT: dealloc %[[SUB_RESULT]] : memref<4xf32> // CHECK-NEXT: dealloc %[[ADD_RESULT]] : memref<4xf32> // CHECK-NEXT: return %[[MUL_RESULT]] : memref<4xf32> // ----- // CHECK-LABEL: func @fusion func @fusion(%multiplier: tensor<2x2xf32>, %summand_1: tensor<2x2xf32>, %summand_2: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: (%{{.*}}: {{.*}}, {{.*}}: {{.*}}, {{.*}}: {{.*}}) // CHECK-NEXT: %[[ADD_RESULT:.*]] = alloc() : memref<2x2xf32> %sum = "mhlo.add"(%summand_1, %summand_2) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK-NEXT: "lmhlo.add"(%{{.*}}, %{{.*}}, %[[ADD_RESULT]]) // CHECK-NEXT: %[[MUL_RESULT:.*]] = alloc() : memref<2x2xf32> %result = "mhlo.multiply"(%sum, %multiplier) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK-NEXT: "lmhlo.multiply"(%[[ADD_RESULT]], %{{.*}}, %[[MUL_RESULT]]) // CHECK-NEXT: dealloc %[[ADD_RESULT]] : memref<2x2xf32> // CHECK-NEXT: return %[[MUL_RESULT]] : memref<2x2xf32> return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @copy func @copy(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.copy"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // TODO(herhut): An explicit copy should not be removed. // TODO-CHECK: "lmhlo.copy"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @exp func @exp(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.exponential"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.exponential"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @expm1 func @expm1(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.exponential_minus_one"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.exponential_minus_one"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @log func @log(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.log"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.log"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @select func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.select"(%pred, %lhs, %rhs) : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.select"(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @compare func @compare(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xi1> { %result = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"} : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> // CHECK: "lmhlo.compare"(%{{.*}}, %{{.*}}, %{{.*}}) {comparison_direction = "EQ"} return %result : tensor<2x2xi1> } // ----- // CHECK-LABEL: func @broadcast func @broadcast(%operand: tensor<5xf32>) -> tensor<10x5xf32> { %result = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<5xf32>) -> tensor<10x5xf32> // CHECK: "lmhlo.broadcast_in_dim"(%{{.*}}, %{{.*}}) {broadcast_dimensions = dense<1> : tensor<1xi64>} return %result : tensor<10x5xf32> } // ----- // CHECK: #[[MAP:.*]] = affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0 * s0 + d1 * s1 + d2 * s2)> // CHECK-LABEL: func @dyn_broadcast func @dyn_broadcast(%operand: tensor) -> tensor { // CHECK-SAME: %[[OPERAND:.*]]: memref %c1 = constant 1 : i64 %shape = tensor.from_elements %c1, %c1, %c1 : tensor<3xi64> %result = "mhlo.dynamic_broadcast_in_dim"(%operand, %shape) { broadcast_dimensions = dense<[1, 2]> : tensor<2xi64> } : (tensor, tensor<3xi64>) -> tensor return %result : tensor } // CHECK: %[[SHAPE:.*]] = tensor.from_elements // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[OPER_DIM_1:.*]] = dim %[[OPERAND]], %[[C1]] : memref // CHECK: %[[OP_STRIDE_0:.*]] = muli %[[C1]], %[[OPER_DIM_1]] : index // CHECK: %[[OPER_DIM_0:.*]] = dim %[[OPERAND]], %[[C0]] : memref // CHECK: %[[EL0:.*]] = tensor.extract %[[SHAPE]]{{\[}}%[[C0]]] : tensor<3xi64> // CHECK: %[[SIZE_0:.*]] = index_cast %[[EL0]] : i64 to index // CHECK: %[[EL1:.*]] = tensor.extract %[[SHAPE]]{{\[}}%[[C1]]] : tensor<3xi64> // CHECK: %[[SIZE_1:.*]] = index_cast %[[EL1]] : i64 to index // CHECK: %[[EXPAND_1:.*]] = cmpi slt, %[[OPER_DIM_0]], %[[SIZE_1]] : index // CHECK: %[[STRIDE_1:.*]] = select %[[EXPAND_1]], %[[C0]], %[[OP_STRIDE_0]] : index // CHECK: %[[C2:.*]] = constant 2 : index // CHECK: %[[EL2:.*]] = tensor.extract %[[SHAPE]]{{\[}}%[[C2]]] : tensor<3xi64> // CHECK: %[[SIZE_2:.*]] = index_cast %[[EL2]] : i64 to index // CHECK: %[[EXPAND_2:.*]] = cmpi slt, %[[OPER_DIM_1]], %[[SIZE_2]] : index // CHECK: %[[STRIDE_2:.*]] = select %[[EXPAND_2]], %[[C0]], %[[C1]] : index // CHECK: %[[TRANSFORMED_MEMREF:.*]] = memref_reinterpret_cast %[[OPERAND]] to offset: [0], sizes: {{\[}}%[[SIZE_0]], %[[SIZE_1]], %[[SIZE_2]]], strides: {{\[}}%[[C0]], %[[STRIDE_1]], %[[STRIDE_2]]] : memref to memref // CHECK: %[[RESULT:.*]] = alloc(%[[SIZE_0]], %[[SIZE_1]], %[[SIZE_2]]) : memref // CHECK: "lmhlo.copy"(%[[TRANSFORMED_MEMREF]], %[[RESULT]]) : (memref, memref) -> () // CHECK: return %[[RESULT]] : memref // ----- // CHECK-LABEL: func @complex func @complex(%real: tensor<2x2xf32>, %imag: tensor<2x2xf32>) -> tensor<2x2xcomplex> { %result = "mhlo.complex"(%real, %imag) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xcomplex> // CHECK: "lmhlo.complex"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xcomplex> } // ----- // CHECK-LABEL: func @complex_dyn func @complex_dyn(%real: tensor, %imag: tensor) -> tensor> { %result = "mhlo.complex"(%real, %imag) : (tensor, tensor) -> tensor> // CHECK: "lmhlo.complex"(%{{.*}}, %{{.*}}) return %result : tensor> } // ----- // CHECK-LABEL: func @real func @real(%operand: tensor<2x2xcomplex>) -> tensor<2x2xf32> { %result = "mhlo.real"(%operand) : (tensor<2x2xcomplex>) -> tensor<2x2xf32> // CHECK: "lmhlo.real"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @real_dyn func @real_dyn(%operand: tensor>) -> tensor { %result = "mhlo.real"(%operand) : (tensor>) -> tensor // CHECK: "lmhlo.real"(%{{.*}}, %{{.*}}) return %result : tensor } // ----- // CHECK-LABEL: func @imag func @imag(%operand: tensor<2x2xcomplex>) -> tensor<2x2xf32> { %result = "mhlo.imag"(%operand) : (tensor<2x2xcomplex>) -> tensor<2x2xf32> // CHECK: "lmhlo.imag"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @gather func @gather(%operand: tensor<13x7xf32>, %idxs: tensor<5xi32>) -> tensor<5x7xf32> { %result = "mhlo.gather"(%operand, %idxs) { dimension_numbers = { collapsed_slice_dims = dense<0> : tensor<1xi64> , index_vector_dim = 1 : i64 , offset_dims = dense<1> : tensor<1xi64> , start_index_map = dense<0> : tensor<1xi64> } , indices_are_sorted = false , name = "gather.71" , slice_sizes = dense<[1, 7]> : tensor<2xi64> } : (tensor<13x7xf32>, tensor<5xi32>) -> tensor<5x7xf32> // CHECK: "lmhlo.gather"(%{{.*}}, %{{.*}}, %{{.*}}) return %result : tensor<5x7xf32> } // ----- // CHECK-LABEL: func @imag_dyn func @imag_dyn(%operand: tensor>) -> tensor { %result = "mhlo.imag"(%operand) : (tensor>) -> tensor // CHECK: "lmhlo.imag"(%{{.*}}, %{{.*}}) return %result : tensor } // ----- // CHECK-LABEL: func @iota // TODO(herhut): Dummy should not be required here. func @iota(%dummy: tensor) -> tensor<10xi32> { %result = "mhlo.iota"() {iota_dimension = 0 : i64} : () -> tensor<10xi32> // CHECK: "lmhlo.iota"(%{{.*}}) {iota_dimension = 0 : i64} return %result : tensor<10xi32> } // ----- // CHECK-LABEL: func @abs func @abs(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.abs"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.abs"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @and func @and(%operand0: tensor<2x2xi32>, %operand1: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.and"(%operand0, %operand1) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.and"(%{{.*}}, %{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @ceil func @ceil(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.ceil"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.ceil"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @convert func @convert(%operand: tensor<2x2xf32>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xi32> // CHECK: "lmhlo.convert"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @cos func @cos(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.cosine"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.cosine"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @floor func @floor(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.floor"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.floor"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @neg func @neg(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.negate"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.negate"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @not func @not(%operand: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.not"(%operand) : (tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.not"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @or func @or(%operand0: tensor<2x2xi32>, %operand1: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.or"(%operand0, %operand1) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.or"(%{{.*}}, %{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @rsqrt func @rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.rsqrt"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.rsqrt"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @sign func @sign(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.sign"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.sign"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @sqrt func @sqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.sqrt"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.sqrt"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @shift_left func @shift_left(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_left"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.shift_left"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @shift_right_arithmetic func @shift_right_arithmetic(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_right_arithmetic"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.shift_right_arithmetic"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @shift_right_logical func @shift_right_logical(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_right_logical"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.shift_right_logical"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @tanh func @tanh(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.tanh"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.tanh"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @remainder func @remainder(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.remainder"(%{{.*}}, %{{.*}}, %{{.*}}) return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @xor func @xor(%operand0: tensor<2x2xi32>, %operand1: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.xor"(%operand0, %operand1) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: "lmhlo.xor"(%{{.*}}, %{{.*}}) return %result : tensor<2x2xi32> } // ----- // Dynamic shape binary element-wise operation. // CHECK-LABEL: func @add_dyn func @add_dyn(%lhs: tensor, %rhs: tensor) -> tensor { %result = "mhlo.add"(%lhs, %rhs) : (tensor, tensor) -> tensor // CHECK: %[[SHAPE:.*]] = shape.shape_of %arg0 : memref -> tensor<2xindex> // CHECK: %[[EE0:.*]] = tensor.extract %[[SHAPE]][%[[C0]]] : tensor<2xindex> // CHECK: %[[EE1:.*]] = tensor.extract %[[SHAPE]][%[[C1]]] : tensor<2xindex> // CHECK: %[[RESULT:.*]] = alloc(%[[EE0]], %[[EE1]]) // CHECK: "lmhlo.add"(%arg0, %arg1, %[[RESULT]]) : (memref, memref, memref) -> () return %result : tensor // CHECK: return %[[RESULT]] } // ----- // Dynamic shape unary element-wise operation. // CHECK-LABEL: func @tanh_dyn func @tanh_dyn(%arg0: tensor) -> tensor { %result = "mhlo.tanh"(%arg0) : (tensor) -> tensor // CHECK: %[[SHAPE:.*]] = shape.shape_of %arg0 : memref -> tensor<2xindex> // CHECK: %[[EE0:.*]] = tensor.extract %[[SHAPE]][%[[C0]]] : tensor<2xindex> // CHECK: %[[EE1:.*]] = tensor.extract %[[SHAPE]][%[[C1]]] : tensor<2xindex> // CHECK: %[[RESULT:.*]] = alloc(%[[EE0]], %[[EE1]]) // CHECK: "lmhlo.tanh"(%arg0, %[[RESULT]]) : (memref, memref) -> () return %result : tensor // CHECK: return %[[RESULT]] } // ----- // CHECK-LABEL: func @dot func @dot(%arg0: tensor<1024x1024xf32>) -> tensor<1024x1024xf32> { // CHECK-SAME: (%[[ARG0:.*]]: [[TYPE:.*]]) -> [[TYPE]] // CHECK-NEXT: %[[ALLOC:.*]] = alloc // CHECK: "lmhlo.dot"(%[[ARG0]], %[[ARG0]], %[[ALLOC]]) { // dot_dimension_numbers = { // lhs_batching_dimensions = dense<> : tensor<0xi64>, // lhs_contracting_dimensions = dense<1> : tensor<1xi64>, // rhs_batching_dimensions = dense<> : tensor<0xi64>, // rhs_contracting_dimensions = dense<0> : tensor<1xi64>}} // : ([[TYPE]], [[TYPE]], [[TYPE]]) -> () %dot = "mhlo.dot"(%arg0, %arg0) : (tensor<1024x1024xf32>, tensor<1024x1024xf32>) -> tensor<1024x1024xf32> // CHECK: return %[[ALLOC]] return %dot : tensor<1024x1024xf32> } // ----- // CHECK-LABEL: func @conv func @conv(%input: tensor<3x5x5x3xf32>, %filter : tensor<2x2x3x4xf32>) -> tensor<3x5x5x4xf32> { %c0 = constant 0 : index // CHECK: %[[OUT:.*]] = alloc() : memref<3x5x5x4xf32> // CHECK: "lmhlo.convolution"(%{{.+}}, %{{.+}}, %[[OUT]]) // CHECK-SAME: padding = dense<[ // CHECK-SAME: [0, 1], [0, 1]]> : tensor<2x2xi64> // CHECK-SAME: rhs_dilation = dense<[1, 2]> // CHECK-SAME: window_strides = dense<[2, 1]> %out = "mhlo.convolution"(%filter, %input) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 1 : i64, padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>, rhs_dilation = dense<[1, 2]> : tensor<2xi64>, window_strides = dense<[2, 1]> : tensor<2xi64> } : (tensor<2x2x3x4xf32>, tensor<3x5x5x3xf32>) -> tensor<3x5x5x4xf32> return %out : tensor<3x5x5x4xf32> } // ----- // CHECK-LABEL: func @reduce func @reduce(%arg0: tensor<1x8xf32>, %arg1: tensor) -> tensor<1xf32> { // CHECK: %[[OUT:.*]] = alloc() : memref<1xf32> // CHECK: "lmhlo.reduce"(%{{.+}}, %{{.+}}, %[[OUT]]) ( { // CHECK: ^bb0(%[[ARG1:.*]]: memref, %[[ARG2:.*]]: memref, // CHECK-SAME: %[[ARG3:.*]]: memref): // CHECK: %[[TMP:.*]] = alloc() : memref // CHECK: "lmhlo.add"(%[[ARG1]], %[[ARG2]], %[[TMP]]) // CHECK: "lmhlo.copy"(%[[TMP]], %[[ARG3]]) // CHECK: "lmhlo.terminator"() : () -> () // CHECK: }) {dimensions = dense<1> : tensor<1xi64>} // CHECK-SAME: : (memref<1x8xf32>, memref, memref<1xf32>) -> () %0 = "mhlo.reduce"(%arg0, %arg1) ( { ^bb0(%arg2: tensor, %arg3: tensor): // no predecessors %1 = mhlo.add %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x8xf32>, tensor) -> tensor<1xf32> return %0 : tensor<1xf32> } // ----- // CHECK-LABEL: func @transpose func @transpose(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %result = "mhlo.transpose"(%operand) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: "lmhlo.transpose"(%{{.*}}, %{{.*}}) {permutation = dense<[1, 0]> : tensor<2xi64>} return %result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @custom_call // CHECK-SAME:([[ARG0:%.*]]: memref<2x2xf32>, [[ARG1:%.*]]: memref<2x3xf32>) func @custom_call(%arg0: tensor<2x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<4x4xf16> { // CHECK: "lmhlo.custom_call"([[ARG0]], [[ARG1]], %{{.*}}) {backend_config = "", call_target_name = "foo", has_side_effect = false, operand_segment_sizes = dense<[2, 1]> : vector<2xi32>} %result = "mhlo.custom_call"(%arg0, %arg1) {backend_config = "", call_target_name = "foo", has_side_effect = false} : (tensor<2x2xf32>, tensor<2x3xf32>) -> tensor<4x4xf16> return %result : tensor<4x4xf16> } // ----- // CHECK-LABEL: func @custom_call_multiout // CHECK-SAME:([[ARG0:%.*]]: memref<2x2xf32>, [[ARG1:%.*]]: memref<2x3xf32>) func @custom_call_multiout(%arg0: tensor<2x2xf32>, %arg1: tensor<2x3xf32>) -> tensor<4x4xf16> { // CHECK: "lmhlo.custom_call"([[ARG0]], [[ARG1]], %{{.*}}, %{{.*}}) {backend_config = "", call_target_name = "foo", has_side_effect = false, operand_segment_sizes = dense<2> : vector<2xi32>} %temp:2 = "mhlo.custom_call"(%arg0, %arg1) {backend_config = "", call_target_name = "foo", has_side_effect = false} : (tensor<2x2xf32>, tensor<2x3xf32>) -> (tensor<4x4xf16>, tensor<4x4xf16>) %result = "mhlo.add"(%temp#0, %temp#1) : (tensor<4x4xf16>, tensor<4x4xf16>) -> tensor<4x4xf16> return %result : tensor<4x4xf16> } // ----- // CHECK-LABEL: func @isfinite func @isfinite(%arg0: tensor<2x2xf32>) -> tensor<2x2xi1> { // CHECK: "lmhlo.is_finite"(%{{.*}}, %{{.*}}) %result = "mhlo.is_finite"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xi1> return %result : tensor<2x2xi1> } // ----- // Test that assuming ops propagate tensor types. // CHECK-LABEL: func @shape_assuming_tensor func @shape_assuming_tensor(%arg0: tensor) -> tensor { %0 = mhlo.constant dense<0.000000e+00> : tensor %1 = shape.const_witness true // CHECK: shape.assuming %{{.*}} -> (memref) %2 = shape.assuming %1 -> (tensor) { %3 = shape.shape_of %arg0 : tensor -> tensor %4 = tensor.cast %3 : tensor to tensor<1xindex> %5 = "mhlo.dynamic_broadcast_in_dim"(%0, %4) {broadcast_dimensions = dense<> : tensor<0xi64>} : (tensor, tensor<1xindex>) -> tensor %6 = "mhlo.dynamic_broadcast_in_dim"(%arg0, %4) {broadcast_dimensions = dense<0> : tensor<1xi64>} : (tensor, tensor<1xindex>) -> tensor // CHECK: "lmhlo.maximum"(%{{.*}}, %{{.*}}, %{{.*}}) : (memref, memref, memref) -> () %7 = mhlo.maximum %5, %6 : tensor // CHECK: shape.assuming_yield %{{.*}} : memref shape.assuming_yield %7 : tensor } return %2 : tensor }