// RUN: mlir-hlo-opt %s --split-input-file --mhlo-rank-specialization-cluster | FileCheck %s // RUN: mlir-hlo-opt %s --split-input-file --mhlo-rank-specialization-cluster --mhlo-rank-specialization-to-scf | FileCheck %s --check-prefix CHECK-SCF // CHECK-LABEL: @add_mul // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<*xf32>) func @add_mul(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG2]], %[[ARG0]], %[[ARG1]]) ( { // CHECK: ^bb0(%[[ARG2_:.*]]: tensor<*xf32>, %[[ARG0_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>): // CHECK: %[[TMP:.*]] = chlo.broadcast_multiply %[[ARG0_]], %[[ARG1_]] // CHECK: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[ARG2_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[INNER_RES]]) // CHECK: }) : (tensor<*xf32>, tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> // CHECK: return %[[RES]] %0 = chlo.broadcast_multiply %arg0, %arg1 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %1 = chlo.broadcast_add %0, %arg2 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> return %1 : tensor<*xf32> } // CHECK-SCF-LABEL: @add_mul // CHECK-SCF-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<*xf32>) // CHECK-SCF-DAG: %[[C1:.*]] = constant 1 // CHECK-SCF-DAG: %[[C2:.*]] = constant 2 // CHECK-SCF-DAG: %[[C3:.*]] = constant 3 // CHECK-SCF-DAG: %[[C4:.*]] = constant 4 // CHECK-SCF-DAG: %[[C5:.*]] = constant 5 // CHECK-SCF-DAG: %[[C6:.*]] = constant 6 // CHECK-SCF-DAG: %[[C7:.*]] = constant 7 // CHECK-SCF-DAG: %[[C8:.*]] = constant 8 // CHECK-SCF-DAG: %[[ONE_SHAPE_1:.*]] = shape.const_shape [1] // CHECK-SCF-DAG: %[[ONE_SHAPE_2:.*]] = shape.const_shape [1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_3:.*]] = shape.const_shape [1, 1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_4:.*]] = shape.const_shape [1, 1, 1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_5:.*]] = shape.const_shape [1, 1, 1, 1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_6:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_7:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1, 1] // CHECK-SCF-DAG: %[[ONE_SHAPE_8:.*]] = shape.const_shape [1, 1, 1, 1, 1, 1, 1, 1] // CHECK-SCF-DAG: %[[SHAPE_ARG0:.*]] = shape.shape_of %[[ARG0]] // CHECK-SCF-DAG: %[[SHAPE_ARG1:.*]] = shape.shape_of %[[ARG1]] // CHECK-SCF-DAG: %[[SHAPE_ARG2:.*]] = shape.shape_of %[[ARG2]] // Find maximum reduced rank. // CHECK-SCF-DAG: %[[REDUCED_SHAPES:.*]]:3 = chlo.minimum_broadcast_shapes %[[SHAPE_ARG2]], %[[SHAPE_ARG0]], %[[SHAPE_ARG1]] // CHECK-SCF-DAG: %[[REDUCED_RANK0:.*]] = shape.rank %[[REDUCED_SHAPES]]#1 // CHECK-SCF-DAG: %[[REDUCED_RANK1:.*]] = shape.rank %[[REDUCED_SHAPES]]#2 // CHECK-SCF-DAG: %[[REDUCED_RANK2:.*]] = shape.rank %[[REDUCED_SHAPES]]#0 // CHECK-SCF-DAG: %[[R2_GT_R0:.*]] = cmpi sgt, %[[REDUCED_RANK2]], %[[REDUCED_RANK0]] // CHECK-SCF-DAG: %[[R20:.*]] = select %[[R2_GT_R0]], %[[REDUCED_RANK2]], %[[REDUCED_RANK0]] // CHECK-SCF-DAG: %[[R20_GT_R1:.*]] = cmpi sgt, %[[R20]], %[[REDUCED_RANK1]] // CHECK-SCF-DAG: %[[MAX_RED_RANK:.*]] = select %[[R20_GT_R1]], %15, %[[REDUCED_RANK1]] // Case 1: // CHECK-SCF: %[[MAX_RED_RANK_EQ_1:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C1]] // CHECK-SCF: %[[UNSHAPED_RES_1:.*]] = scf.if %[[MAX_RED_RANK_EQ_1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 2: // CHECK-SCF: %[[MAX_RED_RANK_EQ_2:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C2]] // CHECK-SCF: %[[UNSHAPED_RES_2:.*]] = scf.if %[[MAX_RED_RANK_EQ_2]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_2]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_2]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_2]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 3: // CHECK-SCF: %[[MAX_RED_RANK_EQ_3:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C3]] // CHECK-SCF: %[[UNSHAPED_RES_3:.*]] = scf.if %[[MAX_RED_RANK_EQ_3]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_3]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_3]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_3]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 4: // CHECK-SCF: %[[MAX_RED_RANK_EQ_4:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C4]] // CHECK-SCF: %[[UNSHAPED_RES_4:.*]] = scf.if %[[MAX_RED_RANK_EQ_4]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_4]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_4]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_4]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 5: // CHECK-SCF: %[[MAX_RED_RANK_EQ_5:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C5]] // CHECK-SCF: %[[UNSHAPED_RES_5:.*]] = scf.if %[[MAX_RED_RANK_EQ_5]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_5]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_5]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_5]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 6: // CHECK-SCF: %[[MAX_RED_RANK_EQ_6:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C6]] // CHECK-SCF: %[[UNSHAPED_RES_6:.*]] = scf.if %[[MAX_RED_RANK_EQ_6]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_6]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_6]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_6]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 7: // CHECK-SCF: %[[MAX_RED_RANK_EQ_7:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C7]] // CHECK-SCF: %[[UNSHAPED_RES_7:.*]] = scf.if %[[MAX_RED_RANK_EQ_7]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_7]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_7]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_7]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: else // Case 8: // CHECK-SCF: %[[MAX_RED_RANK_EQ_8:.*]] = cmpi eq, %[[MAX_RED_RANK]], %[[C8]] // CHECK-SCF: assert %[[MAX_RED_RANK_EQ_8]], "Input for dynamic binary or n-ary op lowering was of a rank greater than 8" // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#1, %[[ONE_SHAPE_8]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#2, %[[ONE_SHAPE_8]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2:.*]] = shape.broadcast %[[REDUCED_SHAPES]]#0, %[[ONE_SHAPE_8]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG0_:.*]] = tensor.cast %[[EXT_SHAPE_ARG0]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG1_:.*]] = tensor.cast %[[EXT_SHAPE_ARG1]] // CHECK-SCF-DAG: %[[EXT_SHAPE_ARG2_:.*]] = tensor.cast %[[EXT_SHAPE_ARG2]] // CHECK-SCF-DAG: %[[REDUCED_ARG0:.*]] = "mhlo.dynamic_reshape"(%[[ARG0]], %[[EXT_SHAPE_ARG0_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG1:.*]] = "mhlo.dynamic_reshape"(%[[ARG1]], %[[EXT_SHAPE_ARG1_]]) // CHECK-SCF-DAG: %[[REDUCED_ARG2:.*]] = "mhlo.dynamic_reshape"(%[[ARG2]], %[[EXT_SHAPE_ARG2_]]) // CHECK-SCF-DAG: %[[TMP:.*]] = chlo.broadcast_multiply %[[REDUCED_ARG0]], %[[REDUCED_ARG1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[REDUCED_ARG2]] : (tensor, tensor) // CHECK-SCF-DAG: %[[INNER_RES_:.*]] = tensor.cast %[[INNER_RES]] // CHECK-SCF: scf.yield %[[INNER_RES_]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_7]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_6]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_5]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_4]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_3]] // CHECK-SCF: scf.yield %[[UNSHAPED_RES_2]] // Reshape the result. // CHECK-SCF-DAG: %[[SHAPE_ARG0:.*]] = shape.shape_of %[[ARG0]] // CHECK-SCF-DAG: %[[SHAPE_ARG1:.*]] = shape.shape_of %[[ARG1]] // CHECK-SCF-DAG: %[[SHAPE_ARG2:.*]] = shape.shape_of %[[ARG2]] // CHECK-SCF-DAG: %[[RES_SHAPE:.*]] = shape.broadcast %[[SHAPE_ARG2]], %[[SHAPE_ARG0]], %[[SHAPE_ARG1]] // CHECK-SCF-DAG: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES_1]], %[[RES_SHAPE]]) // CHECK-SCF: return %[[RES]] // ----- // Unary MHLO operation. // CHECK-LABEL: @sqrt // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) func @sqrt(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>): // CHECK: %[[TMP0:.*]] = "mhlo.sqrt"(%[[ARG_]]) // CHECK: %[[TMP1:.*]] = "mhlo.sqrt"(%[[TMP0]]) // CHECK: %[[TMP2:.*]] = "mhlo.sqrt"(%[[TMP1]]) // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP2]]) // CHECK: return %[[RES]] %0 = "mhlo.sqrt"(%arg) : (tensor<*xf32>) -> tensor<*xf32> %1 = "mhlo.sqrt"(%0) : (tensor<*xf32>) -> tensor<*xf32> %2 = "mhlo.sqrt"(%1) : (tensor<*xf32>) -> tensor<*xf32> return %2 : tensor<*xf32> } // CHECK-SCF-LABEL: @sqrt // CHECK-SCF-SAME: (%[[ARG:.*]]: tensor<*xf32>) // CHECK-SCF: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[N:.*]] = shape.num_elements %[[SHAPE]] // CHECK-SCF: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]] // CHECK-SCF: %[[FLAT_ARG:.*]] = "mhlo.dynamic_reshape"(%[[ARG]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor // CHECK-SCF: %[[TMP0:.*]] = "mhlo.sqrt"(%[[FLAT_ARG]]) : (tensor) // CHECK-SCF: %[[TMP1:.*]] = "mhlo.sqrt"(%[[TMP0]]) : (tensor) // CHECK-SCF: %[[UNSHAPED_RES:.*]] = "mhlo.sqrt"(%[[TMP1]]) : (tensor) // CHECK-SCF: %[[RES_SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES]], %[[RES_SHAPE]]) : (tensor, tensor) -> tensor<*xf32> // CHECK-SCF: return %[[RES]] // ----- // Don't cluster ranked operations. // CHECK-LABEL: @sqrt_ranked // CHECK-SAME: (%[[ARG:.*]]: tensor<3x?xf32>) func @sqrt_ranked(%arg: tensor<3x?xf32>) -> tensor<3x?xf32> { // CHECK-NOT: rank_specialization_cluster %0 = "mhlo.sqrt"(%arg) : (tensor<3x?xf32>) -> tensor<3x?xf32> %1 = "mhlo.sqrt"(%0) : (tensor<3x?xf32>) -> tensor<3x?xf32> %2 = "mhlo.sqrt"(%1) : (tensor<3x?xf32>) -> tensor<3x?xf32> return %2 : tensor<3x?xf32> } // CHECK-SCF-LABEL: @sqrt_ranked // CHECK-SCF-NOT: dynamic_reshape // CHECK-SCF: return // ----- // Ternary operation. // CHECK-LABEL: @select_mixed // CHECK-SAME: (%[[PRED:.*]]: tensor<*xi1>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<2xf32>) func @select_mixed(%pred: tensor<*xi1>, %arg1: tensor<*xf32>, %arg2: tensor<2xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[PRED]], %[[ARG1]], %[[ARG2]]) // CHECK: ^bb0(%[[PRED_:.*]]: tensor<*xi1>, %[[ARG1_:.*]]: tensor<*xf32>, %[[ARG2_:.*]]: tensor<2xf32>) // CHECK: %[[TMP:.*]] = chlo.broadcast_select %[[PRED_]], %[[ARG1_]], %[[ARG2_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = "chlo.broadcast_select"(%pred, %arg1, %arg2) : (tensor<*xi1>, tensor<*xf32>, tensor<2xf32>) -> tensor<*xf32> return %0 : tensor<*xf32> } // CHECK-SCF-LABEL: @select_mixed // CHECK-SCF: chlo.broadcast_select %{{.*}}, %{{.*}}, %{{.*}} : (tensor, tensor, tensor) // ----- // Unary CHLO operation. // CHECK-LABEL: @tan // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) func @tan(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) ( { // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>) // CHECK: %[[TMP0:.*]] = chlo.tan %[[ARG_]] // CHECK: %[[TMP1:.*]] = chlo.tan %[[TMP0]] // CHECK: %[[TMP2:.*]] = chlo.tan %[[TMP1]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP2]]) // CHECK: return %[[RES]] %0 = chlo.tan %arg : tensor<*xf32> -> tensor<*xf32> %1 = chlo.tan %0 : tensor<*xf32> -> tensor<*xf32> %2 = chlo.tan %1 : tensor<*xf32> -> tensor<*xf32> return %2 : tensor<*xf32> } // CHECK-SCF-LABEL: @tan // CHECK-SCF-SAME: (%[[ARG:.*]]: tensor<*xf32>) // CHECK-SCF: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[N:.*]] = shape.num_elements %[[SHAPE]] // CHECK-SCF: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]] // CHECK-SCF: %[[FLAT_ARG:.*]] = "mhlo.dynamic_reshape"(%[[ARG]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor // CHECK-SCF: %[[TMP0:.*]] = chlo.tan %[[FLAT_ARG]] : tensor // CHECK-SCF: %[[TMP1:.*]] = chlo.tan %[[TMP0]] : tensor // CHECK-SCF: %[[UNSHAPED_RES:.*]] = chlo.tan %[[TMP1]] : tensor // CHECK-SCF: %[[RES_SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES]], %[[RES_SHAPE]]) : (tensor, tensor) -> tensor<*xf32> // CHECK-SCF: return %[[RES]] // ----- // Composition of unary/binary CHLO and unary MHLO ops. // CHECK-LABEL: @mixed // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<*xf32>) func @mixed(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG2]], %[[ARG1]], %[[ARG0]]) // CHECK: ^bb0(%[[ARG2_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>, %[[ARG0_:.*]]: tensor<*xf32>) // CHECK: %[[TMP0:.*]] = chlo.tan %[[ARG0_]] // CHECK: %[[TMP1:.*]] = "mhlo.sqrt"(%[[ARG1_]]) // CHECK: %[[TMP2:.*]] = chlo.broadcast_multiply %[[TMP0]], %[[TMP1]] // CHECK: %[[TMP3:.*]] = chlo.broadcast_add %[[TMP2]], %[[ARG2_]] // CHECK: %[[TMP4:.*]] = "mhlo.sqrt"(%[[TMP3]]) // CHECK: %[[TMP5:.*]] = chlo.tan %[[TMP4]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP5]]) // CHECK: return %[[RES]] %0 = chlo.tan %arg0 : tensor<*xf32> -> tensor<*xf32> %1 = "mhlo.sqrt"(%arg1) : (tensor<*xf32>) -> tensor<*xf32> %2 = chlo.broadcast_multiply %0, %1 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %3 = chlo.broadcast_add %2, %arg2 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %4 = "mhlo.sqrt"(%3) : (tensor<*xf32>) -> tensor<*xf32> %5 = chlo.tan %4 : tensor<*xf32> -> tensor<*xf32> return %5 : tensor<*xf32> } // CHECK-SCF-LABEL: @mixed // CHECK-SCF-DAG: %[[TMP0:.*]] = chlo.tan %{{.*}} : tensor // CHECK-SCF-DAG: %[[TMP1:.*]] = "mhlo.sqrt"(%{{.*}}) : (tensor) // CHECK-SCF-DAG: %[[TMP2:.*]] = chlo.broadcast_multiply %[[TMP0]], %[[TMP1]] : (tensor, tensor) // CHECK-SCF-DAG: %[[TMP3:.*]] = chlo.broadcast_add %[[TMP2]], %{{.*}} : (tensor, tensor) // CHECK-SCF-DAG: %[[TMP4:.*]] = "mhlo.sqrt"(%[[TMP3]]) : (tensor) // CHECK-SCF: chlo.tan %[[TMP4]] : tensor // ----- // Constant cluster operand. // CHECK-LABEL: @relu // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) func @relu(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[C0:.*]] = mhlo.constant dense<0.000000e+00> // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]], %[[C0]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>, %[[C0_:.*]]: tensor): // CHECK: %[[TMP:.*]] = chlo.broadcast_maximum %[[ARG_]], %[[C0_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = mhlo.constant dense<0.000000e+00> : tensor %1 = chlo.broadcast_maximum %0, %arg : (tensor, tensor<*xf32>) -> tensor<*xf32> return %1 : tensor<*xf32> } // CHECK-SCF-LABEL: @relu // CHECK-SCF-SAME: (%[[ARG:.*]]: tensor<*xf32>) // CHECK-SCF: %[[C0:.*]] = mhlo.constant dense<0.000000e+00> // CHECK-SCF: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[N:.*]] = shape.num_elements %[[SHAPE]] // CHECK-SCF: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]] // CHECK-SCF: %[[FLAT_ARG:.*]] = "mhlo.dynamic_reshape"(%[[ARG]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor // CHECK-SCF: %[[UNSHAPED_RES:.*]] = chlo.broadcast_maximum %[[FLAT_ARG]], %[[C0]] : (tensor, tensor) // CHECK-SCF: %[[RES_SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES]], %[[RES_SHAPE]]) : (tensor, tensor) -> tensor<*xf32> // CHECK-SCF: return %[[RES]] // ----- // Cluster with binary non-broadcasting operation. // CHECK-LABEL: @angle // CHECK-SAME: (%[[ARG:.*]]: tensor<*xcomplex>) func @angle(%arg : tensor<*xcomplex>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xcomplex>): // CHECK: %[[IMAG:.*]] = "mhlo.imag"(%[[ARG_]]) // CHECK: %[[REAL:.*]] = "mhlo.real"(%[[ARG_]]) // CHECK: %[[TMP:.*]] = mhlo.atan2 %[[IMAG]], %[[REAL]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = "mhlo.imag"(%arg) : (tensor<*xcomplex>) -> tensor<*xf32> %1 = "mhlo.real"(%arg) : (tensor<*xcomplex>) -> tensor<*xf32> %2 = mhlo.atan2 %0, %1 : tensor<*xf32> return %2 : tensor<*xf32> } // CHECK-SCF-LABEL: @angle // CHECK-SCF-SAME: (%[[ARG:.*]]: tensor<*xcomplex>) // CHECK-SCF: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[N:.*]] = shape.num_elements %[[SHAPE]] // CHECK-SCF: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]] // CHECK-SCF: %[[FLAT_ARG:.*]] = "mhlo.dynamic_reshape"(%[[ARG]], %[[FLAT_SHAPE]]) : (tensor<*xcomplex>, tensor<1xindex>) -> tensor> // CHECK-SCF: %[[IMAG:.*]] = "mhlo.imag"(%[[FLAT_ARG]]) : (tensor>) // CHECK-SCF: %[[REAL:.*]] = "mhlo.real"(%[[FLAT_ARG]]) : (tensor>) // CHECK-SCF: %[[UNSHAPED_RES:.*]] = mhlo.atan2 %[[IMAG]], %[[REAL]] : tensor // CHECK-SCF: %[[RES_SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[UNSHAPED_RES]], %[[RES_SHAPE]]) : (tensor, tensor) -> tensor<*xf32> // CHECK-SCF: return %[[RES]] // ----- // CHECK-LABEL: @xlogy // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>) func @xlogy(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[C0:.*]] = mhlo.constant dense<0.000000e+00> // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[C0]], %[[ARG0]], %[[ARG1]]) // CHECK: ^bb0(%[[C0_:.*]]: tensor, %[[ARG0_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>): // CHECK: %[[TMP0:.*]] = chlo.broadcast_compare %[[ARG0_]], %[[C0_]] {comparison_direction = "EQ"} // CHECK: %[[TMP1:.*]] = "mhlo.log"(%[[ARG1_]]) // CHECK: %[[TMP2:.*]] = chlo.broadcast_multiply %[[ARG0_]], %[[TMP1]] // CHECK: %[[TMP3:.*]] = chlo.broadcast_select %[[TMP0]], %[[C0_]], %[[TMP2]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP3]]) // CHECK: return %[[RES]] %0 = mhlo.constant dense<0.000000e+00> : tensor %1 = tensor.cast %0 : tensor to tensor %2 = chlo.broadcast_compare %arg0, %1 {comparison_direction = "EQ"} : (tensor<*xf32>, tensor) -> tensor<*xi1> %3 = "mhlo.log"(%arg1) : (tensor<*xf32>) -> tensor<*xf32> %4 = chlo.broadcast_multiply %arg0, %3 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %5 = chlo.broadcast_select %2, %1, %4 : (tensor<*xi1>, tensor, tensor<*xf32>) -> tensor<*xf32> return %5 : tensor<*xf32> } // CHECK-SCF-LABEL: @xlogy // CHECK-SCF-DAG: %[[PRED:.*]] = chlo.broadcast_compare %{{.*}}, %{{.*}} {comparison_direction = "EQ"} : (tensor, tensor) // CHECK-SCF-DAG: %[[TMP0:.*]] = "mhlo.log"(%{{.*}}) : (tensor) // CHECK-SCF-DAG: %[[TMP1:.*]] = chlo.broadcast_multiply %{{.*}}, %[[TMP0]] : (tensor, tensor) // CHECK-SCF: chlo.broadcast_select %[[PRED]], %{{.*}}, %[[TMP1]] : (tensor, tensor, tensor)