// RUN: mlir-hlo-opt %s -hlo-legalize-to-linalg -split-input-file | FileCheck %s // CHECK: #map0 = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @float_add func @float_add(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ^{{[a-z0-9_]*}} // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: f32 // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32 // CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = addf %[[ARG0]], %[[ARG1]] // CHECK: linalg.yield %[[RESULT]] %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: integer_add func @integer_add(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: addi %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_mul func @float_mul(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: mulf %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_mul func @integer_mul(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: muli %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_remainder func @float_remainder(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: remf %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_remainder func @integer_remainder(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: remi_signed %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_rsqrt func @float_rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %tensor_result = "mhlo.rsqrt"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: linalg.generic // CHECK: rsqrt return %tensor_result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_sub func @float_sub(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: subf %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_sub func @integer_sub(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: subi %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_abs func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: absf %0 = "mhlo.abs"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_exp func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: exp %0 = "mhlo.exponential"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_log func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: log %0 = "mhlo.log"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_ceil func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ceilf %0 = "mhlo.ceil"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_neg func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: negf %0 = "mhlo.negate"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_tanh func @float_tanh(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: tanh %0 = "mhlo.tanh"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_and func @integer_and(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: and %0 = "mhlo.and"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_cmp func @float_cmp(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) { %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"} : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> return %0 : tensor<2x2xi1> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32): // CHECK-NEXT: %[[RESULT:.*]] = cmpf "oeq", %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @int_cmp func @int_cmp(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi1> { %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "LT"} : (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi1>) return %0 : tensor<2x2xi1> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = cmpi "slt", %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @float_cos func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: cos %0 = "mhlo.cosine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_sin func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: sin %0 = "mhlo.sine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @copy // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> { %0 = "mhlo.copy"(%input) : (tensor<2x4x8xf32>) -> (tensor<2x4x8xf32>) return %0 : tensor<2x4x8xf32> } // CHECK: return [[ARG]] : tensor<2x4x8xf32> // ----- // CHECK-LABEL: func @select func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %0 = "mhlo.select"(%pred, %lhs, %rhs) : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> (tensor<2x2xf32>) return %0 : tensor<2x2xf32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[PRED_IN:.*]]: i1, %[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32): // CHECK-NEXT: %[[RESULT:.*]] = select %[[PRED_IN]], %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2) -> ()> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @broadcast_scalar func @broadcast_scalar(%arg: tensor) -> tensor<4x2x1xf32> { %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor) -> tensor<4x2x1xf32> return %0: tensor<4x2x1xf32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-LABEL: func @broadcast func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> { %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> return %0: tensor<4x2x1x4x?x16xf32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, 0)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK-LABEL: func @broadcast_in_dim func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>} : (tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> return %0 : tensor<7x10x6x4x5xf32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1) -> (d0)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @broadcast_in_dim_with_one_to_one func @broadcast_in_dim_with_one_to_one( %operand: tensor<1xf32>) -> tensor<1x5xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[0]> : tensor<1xi64>} : (tensor<1xf32>) -> tensor<1x5xf32> return %0 : tensor<1x5xf32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2) -> ()> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @broadcast_scalar func @broadcast_scalar(%operand: tensor) -> tensor<7x10x6xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor) -> tensor<7x10x6xf32> return %0 : tensor<7x10x6xf32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d0, d3, d2)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-LABEL: func @transpose func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> { %0 = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>} : (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> return %0 : tensor<3x2x5x9xi32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d2)> // CHECK-LABEL: func @reshape_3D_2D func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32> return %0 : tensor<12x42xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)> // CHECK-LABEL: func @reshape_4D_2D func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32> return %0 : tensor<12x42xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)> // CHECK-LABEL: func @reshape_2D_4D func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32> return %0 : tensor<12x1x42x1xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-LABEL: func @minf func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %0 = "mhlo.minimum"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32): // CHECK-NEXT: %[[CMP:.*]] = cmpf "olt", %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @maxi func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %0 = "mhlo.maximum"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[CMP:.*]] = cmpi "sgt", %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-DAG: #[[MAP:.*]] = affine_map<() -> ()> // CHECK-LABEL: func @add_scalar func @add_scalar(%lhs: tensor, %rhs: tensor) -> tensor { %0 = "mhlo.add"(%lhs, %rhs) : (tensor, tensor) -> tensor return %0 : tensor } // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]] // CHECK-NEXT: ^bb0(%[[LHS:.*]]: f32, %[[RHS:.*]]: f32): // CHECK: %[[RESULT:.*]] = addf %[[LHS]], %[[RHS]] // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- func @reshape_collapse_single_dim (%arg0: tensor<1x28x28x1xf32>) -> tensor<1x784xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32> return %0 : tensor<1x784xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)> // CHECK-LABEL: func @reshape_collapse_single_dim // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]] // ----- func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> return %0 : tensor<2x4x3xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)> // CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)> // CHECK-LABEL: func @reshape_collapse // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]]] // ----- func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<2x8xf32>) -> tensor<2x4x2xf32> return %0 : tensor<2x4x2xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)> // CHECK-LABEL: func @reshape_expand // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]] // ----- func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<8xf32>) -> tensor<1x4x2xf32> return %0 : tensor<1x4x2xf32> } // CHECK: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @reshape_single_expand // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]]] // ----- func @reshape_multiple_collapse (%arg0 : tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> return %0 : tensor<1x4x5x6xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2)> // CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)> // CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5)> // CHECK-LABEL: func @reshape_multiple_collapse // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // ----- // CHECK-LABEL: func @convert_i32_to_f32 func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xf32> return %result : tensor<2x2xf32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = sitofp %[[OPERAND_IN]] : i32 to f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @convert_i16_to_i32 func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi16>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i16): // CHECK-NEXT: %[[RESULT:.*]] = zexti %[[OPERAND_IN]] : i16 to i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-LABEL: func @convert_i32_to_i16 func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> { %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi16> return %result : tensor<2x2xi16> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = trunci %[[OPERAND_IN]] : i32 to i16 // CHECK-NEXT: linalg.yield %[[RESULT]] : i16 // ----- // CHECK-LABEL: func @convert_f32_to_f64 func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> { %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf64> return %result : tensor<2x2xf64> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32): // CHECK-NEXT: %[[RESULT:.*]] = fpext %[[OPERAND_IN]] : f32 to f64 // CHECK-NEXT: linalg.yield %[[RESULT]] : f64 // ----- // CHECK-LABEL: func @convert_f64_to_f32 func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> { %result = "mhlo.convert"(%input) : (tensor<2x2xf64>) -> tensor<2x2xf32> return %result : tensor<2x2xf32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f64): // CHECK-NEXT: %[[RESULT:.*]] = fptrunc %[[OPERAND_IN]] : f64 to f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @convert_f32_to_i32 func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32): // CHECK-NEXT: %[[RESULT:.*]] = fptosi %[[OPERAND_IN]] : f32 to i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1) -> (d0, -d1 + 2)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @reverse func @reverse(%input: tensor<2x3xf32>) -> tensor<2x3xf32> { %result = "mhlo.reverse"(%input) { dimensions = dense<1> : tensor<1xi64> } : (tensor<2x3xf32>) -> tensor<2x3xf32> return %result : tensor<2x3xf32> } // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // ----- // CHECK: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @iota func @iota() -> tensor<7x10xf32> { %result = "mhlo.iota"() {iota_dimension = 1 : i64} : () -> (tensor<7x10xf32>) return %result : tensor<7x10xf32> } // CHECK: linalg.indexed_generic // CHECK-SAME: indexing_maps = [#[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[D0:.*]]: index, %[[D1:.*]]: index): // CHECK-NEXT: %[[INT_CAST:.*]] = index_cast %[[D1]] : index to i32 // CHECK-NEXT: %[[FLOAT_CAST:.*]] = sitofp %[[INT_CAST]] : i32 to f32 // CHECK-NEXT: linalg.yield %[[FLOAT_CAST]] : f32