//===- Operator.cpp - Operator class --------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Operator wrapper to simplify using TableGen Record defining a MLIR Op. // //===----------------------------------------------------------------------===// #include "Operator.h" #include "Predicate.h" #include "Trait.h" #include "Type.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #define DEBUG_TYPE "mlir-tblgen-operator" using namespace mlir; using namespace mlir::tblgen; using llvm::DagInit; using llvm::DefInit; using llvm::Record; Operator::Operator(const llvm::Record &def) : dialect(def.getValueAsDef("opDialect")), def(def) { // The first `_` in the op's TableGen def name is treated as separating the // dialect prefix and the op class name. The dialect prefix will be ignored if // not empty. Otherwise, if def name starts with a `_`, the `_` is considered // as part of the class name. StringRef prefix; std::tie(prefix, cppClassName) = def.getName().split('_'); if (prefix.empty()) { // Class name with a leading underscore and without dialect prefix cppClassName = def.getName(); } else if (cppClassName.empty()) { // Class name without dialect prefix cppClassName = prefix; } cppNamespace = def.getValueAsString("cppNamespace"); populateOpStructure(); } std::string Operator::getOperationName() const { auto prefix = dialect.getName(); auto opName = def.getValueAsString("opName"); if (prefix.empty()) return std::string(opName); return std::string(llvm::formatv("{0}.{1}", prefix, opName)); } std::string Operator::getAdaptorName() const { return std::string(llvm::formatv("{0}Adaptor", getCppClassName())); } StringRef Operator::getDialectName() const { return dialect.getName(); } StringRef Operator::getCppClassName() const { return cppClassName; } std::string Operator::getQualCppClassName() const { if (cppNamespace.empty()) return std::string(cppClassName); return std::string(llvm::formatv("{0}::{1}", cppNamespace, cppClassName)); } StringRef Operator::getCppNamespace() const { return cppNamespace; } int Operator::getNumResults() const { DagInit *results = def.getValueAsDag("results"); return results->getNumArgs(); } StringRef Operator::getExtraClassDeclaration() const { constexpr auto attr = "extraClassDeclaration"; if (def.isValueUnset(attr)) return {}; return def.getValueAsString(attr); } const llvm::Record &Operator::getDef() const { return def; } bool Operator::skipDefaultBuilders() const { return def.getValueAsBit("skipDefaultBuilders"); } auto Operator::result_begin() -> value_iterator { return results.begin(); } auto Operator::result_end() -> value_iterator { return results.end(); } auto Operator::getResults() -> value_range { return {result_begin(), result_end()}; } TypeConstraint Operator::getResultTypeConstraint(int index) const { DagInit *results = def.getValueAsDag("results"); return TypeConstraint(cast(results->getArg(index))); } StringRef Operator::getResultName(int index) const { DagInit *results = def.getValueAsDag("results"); return results->getArgNameStr(index); } auto Operator::getResultDecorators(int index) const -> var_decorator_range { Record *result = cast(def.getValueAsDag("results")->getArg(index))->getDef(); if (!result->isSubClassOf("OpVariable")) return var_decorator_range(nullptr, nullptr); return *result->getValueAsListInit("decorators"); } unsigned Operator::getNumVariableLengthResults() const { return llvm::count_if(results, [](const NamedTypeConstraint &c) { return c.constraint.isVariableLength(); }); } unsigned Operator::getNumVariableLengthOperands() const { return llvm::count_if(operands, [](const NamedTypeConstraint &c) { return c.constraint.isVariableLength(); }); } bool Operator::hasSingleVariadicArg() const { return getNumArgs() == 1 && getArg(0).is() && getOperand(0).isVariadic(); } Operator::arg_iterator Operator::arg_begin() const { return arguments.begin(); } Operator::arg_iterator Operator::arg_end() const { return arguments.end(); } Operator::arg_range Operator::getArgs() const { return {arg_begin(), arg_end()}; } StringRef Operator::getArgName(int index) const { DagInit *argumentValues = def.getValueAsDag("arguments"); return argumentValues->getArgNameStr(index); } auto Operator::getArgDecorators(int index) const -> var_decorator_range { Record *arg = cast(def.getValueAsDag("arguments")->getArg(index))->getDef(); if (!arg->isSubClassOf("OpVariable")) return var_decorator_range(nullptr, nullptr); return *arg->getValueAsListInit("decorators"); } const Trait *Operator::getTrait(StringRef trait) const { for (const auto &t : traits) { if (const auto *traitDef = dyn_cast(&t)) { if (traitDef->getFullyQualifiedTraitName() == trait) return traitDef; } else if (const auto *traitDef = dyn_cast(&t)) { if (traitDef->getFullyQualifiedTraitName() == trait) return traitDef; } else if (const auto *traitDef = dyn_cast(&t)) { if (traitDef->getFullyQualifiedTraitName() == trait) return traitDef; } } return nullptr; } auto Operator::region_begin() const -> const_region_iterator { return regions.begin(); } auto Operator::region_end() const -> const_region_iterator { return regions.end(); } auto Operator::getRegions() const -> llvm::iterator_range { return {region_begin(), region_end()}; } unsigned Operator::getNumRegions() const { return regions.size(); } const NamedRegion &Operator::getRegion(unsigned index) const { return regions[index]; } unsigned Operator::getNumVariadicRegions() const { return llvm::count_if(regions, [](const NamedRegion &c) { return c.isVariadic(); }); } auto Operator::successor_begin() const -> const_successor_iterator { return successors.begin(); } auto Operator::successor_end() const -> const_successor_iterator { return successors.end(); } auto Operator::getSuccessors() const -> llvm::iterator_range { return {successor_begin(), successor_end()}; } unsigned Operator::getNumSuccessors() const { return successors.size(); } const NamedSuccessor &Operator::getSuccessor(unsigned index) const { return successors[index]; } unsigned Operator::getNumVariadicSuccessors() const { return llvm::count_if(successors, [](const NamedSuccessor &c) { return c.isVariadic(); }); } auto Operator::trait_begin() const -> const_trait_iterator { return traits.begin(); } auto Operator::trait_end() const -> const_trait_iterator { return traits.end(); } auto Operator::getTraits() const -> llvm::iterator_range { return {trait_begin(), trait_end()}; } auto Operator::attribute_begin() const -> attribute_iterator { return attributes.begin(); } auto Operator::attribute_end() const -> attribute_iterator { return attributes.end(); } auto Operator::getAttributes() const -> llvm::iterator_range { return {attribute_begin(), attribute_end()}; } auto Operator::operand_begin() -> value_iterator { return operands.begin(); } auto Operator::operand_end() -> value_iterator { return operands.end(); } auto Operator::getOperands() -> value_range { return {operand_begin(), operand_end()}; } auto Operator::getArg(int index) const -> Argument { return arguments[index]; } // Mapping from result index to combined argument and result index. Arguments // are indexed to match getArg index, while the result indexes are mapped to // avoid overlap. static int resultIndex(int i) { return -1 - i; } bool Operator::isVariadic() const { return any_of(llvm::concat(operands, results), [](const NamedTypeConstraint &op) { return op.isVariadic(); }); } void Operator::populateTypeInferenceInfo( const llvm::StringMap &argumentsAndResultsIndex) { // If the type inference op interface is not registered, then do not attempt // to determine if the result types an be inferred. auto &recordKeeper = def.getRecords(); auto *inferTrait = recordKeeper.getDef(inferTypeOpInterface); allResultsHaveKnownTypes = false; if (!inferTrait) return; // If there are no results, the skip this else the build method generated // overlaps with another autogenerated builder. if (getNumResults() == 0) return; // Skip for ops with variadic operands/results. // TODO: This can be relaxed. if (isVariadic()) return; // Skip cases currently being custom generated. // TODO: Remove special cases. if (getTrait("::mlir::OpTrait::SameOperandsAndResultType")) return; // We create equivalence classes of argument/result types where arguments // and results are mapped into the same index space and indices corresponding // to the same type are in the same equivalence class. llvm::EquivalenceClasses ecs; resultTypeMapping.resize(getNumResults()); // Captures the argument whose type matches a given result type. Preference // towards capturing operands first before attributes. auto captureMapping = [&](int i) { bool found = false; ecs.insert(resultIndex(i)); auto mi = ecs.findLeader(resultIndex(i)); for (auto me = ecs.member_end(); mi != me; ++mi) { if (*mi < 0) { auto tc = getResultTypeConstraint(i); if (tc.getBuilderCall().hasValue()) { resultTypeMapping[i].emplace_back(tc); found = true; } continue; } if (getArg(*mi).is()) { // TODO: Handle attributes. continue; } else { resultTypeMapping[i].emplace_back(*mi); found = true; } } return found; }; for (const Trait &trait : traits) { const llvm::Record &def = trait.getDef(); // If the infer type op interface was manually added, then treat it as // intention that the op needs special handling. // TODO: Reconsider whether to always generate, this is more conservative // and keeps existing behavior so starting that way for now. if (def.isSubClassOf( llvm::formatv("{0}::Trait", inferTypeOpInterface).str())) return; if (const auto *traitDef = dyn_cast(&trait)) if (&traitDef->getDef() == inferTrait) return; if (!def.isSubClassOf("AllTypesMatch")) continue; auto values = def.getValueAsListOfStrings("values"); auto root = argumentsAndResultsIndex.lookup(values.front()); for (StringRef str : values) ecs.unionSets(argumentsAndResultsIndex.lookup(str), root); } // Verifies that all output types have a corresponding known input type // and chooses matching operand or attribute (in that order) that // matches it. allResultsHaveKnownTypes = all_of(llvm::seq(0, getNumResults()), captureMapping); // If the types could be computed, then add type inference trait. if (allResultsHaveKnownTypes) traits.push_back(Trait::create(inferTrait->getDefInit())); } void Operator::populateOpStructure() { auto &recordKeeper = def.getRecords(); auto *typeConstraintClass = recordKeeper.getClass("TypeConstraint"); auto *attrClass = recordKeeper.getClass("Attr"); auto *derivedAttrClass = recordKeeper.getClass("DerivedAttr"); auto *opVarClass = recordKeeper.getClass("OpVariable"); numNativeAttributes = 0; DagInit *argumentValues = def.getValueAsDag("arguments"); unsigned numArgs = argumentValues->getNumArgs(); // Mapping from name of to argument or result index. Arguments are indexed // to match getArg index, while the results are negatively indexed. llvm::StringMap argumentsAndResultsIndex; // Handle operands and native attributes. for (unsigned i = 0; i != numArgs; ++i) { auto *arg = argumentValues->getArg(i); auto givenName = argumentValues->getArgNameStr(i); auto *argDefInit = dyn_cast(arg); if (!argDefInit) PrintFatalError(def.getLoc(), Twine("undefined type for argument #") + Twine(i)); Record *argDef = argDefInit->getDef(); if (argDef->isSubClassOf(opVarClass)) argDef = argDef->getValueAsDef("constraint"); if (argDef->isSubClassOf(typeConstraintClass)) { operands.push_back( NamedTypeConstraint{givenName, TypeConstraint(argDef)}); } else if (argDef->isSubClassOf(attrClass)) { if (givenName.empty()) PrintFatalError(argDef->getLoc(), "attributes must be named"); if (argDef->isSubClassOf(derivedAttrClass)) PrintFatalError(argDef->getLoc(), "derived attributes not allowed in argument list"); attributes.push_back({givenName, Attribute(argDef)}); ++numNativeAttributes; } else { PrintFatalError(def.getLoc(), "unexpected def type; only defs deriving " "from TypeConstraint or Attr are allowed"); } if (!givenName.empty()) argumentsAndResultsIndex[givenName] = i; } // Handle derived attributes. for (const auto &val : def.getValues()) { if (auto *record = dyn_cast(val.getType())) { if (!record->isSubClassOf(attrClass)) continue; if (!record->isSubClassOf(derivedAttrClass)) PrintFatalError(def.getLoc(), "unexpected Attr where only DerivedAttr is allowed"); if (record->getClasses().size() != 1) { PrintFatalError( def.getLoc(), "unsupported attribute modelling, only single class expected"); } attributes.push_back( {cast(val.getNameInit())->getValue(), Attribute(cast(val.getValue()))}); } } // Populate `arguments`. This must happen after we've finalized `operands` and // `attributes` because we will put their elements' pointers in `arguments`. // SmallVector may perform re-allocation under the hood when adding new // elements. int operandIndex = 0, attrIndex = 0; for (unsigned i = 0; i != numArgs; ++i) { Record *argDef = dyn_cast(argumentValues->getArg(i))->getDef(); if (argDef->isSubClassOf(opVarClass)) argDef = argDef->getValueAsDef("constraint"); if (argDef->isSubClassOf(typeConstraintClass)) { attrOrOperandMapping.push_back( {OperandOrAttribute::Kind::Operand, operandIndex}); arguments.emplace_back(&operands[operandIndex++]); } else { assert(argDef->isSubClassOf(attrClass)); attrOrOperandMapping.push_back( {OperandOrAttribute::Kind::Attribute, attrIndex}); arguments.emplace_back(&attributes[attrIndex++]); } } auto *resultsDag = def.getValueAsDag("results"); auto *outsOp = dyn_cast(resultsDag->getOperator()); if (!outsOp || outsOp->getDef()->getName() != "outs") { PrintFatalError(def.getLoc(), "'results' must have 'outs' directive"); } // Handle results. for (unsigned i = 0, e = resultsDag->getNumArgs(); i < e; ++i) { auto name = resultsDag->getArgNameStr(i); auto *resultInit = dyn_cast(resultsDag->getArg(i)); if (!resultInit) { PrintFatalError(def.getLoc(), Twine("undefined type for result #") + Twine(i)); } auto *resultDef = resultInit->getDef(); if (resultDef->isSubClassOf(opVarClass)) resultDef = resultDef->getValueAsDef("constraint"); results.push_back({name, TypeConstraint(resultDef)}); if (!name.empty()) argumentsAndResultsIndex[name] = resultIndex(i); } // Handle successors auto *successorsDag = def.getValueAsDag("successors"); auto *successorsOp = dyn_cast(successorsDag->getOperator()); if (!successorsOp || successorsOp->getDef()->getName() != "successor") { PrintFatalError(def.getLoc(), "'successors' must have 'successor' directive"); } for (unsigned i = 0, e = successorsDag->getNumArgs(); i < e; ++i) { auto name = successorsDag->getArgNameStr(i); auto *successorInit = dyn_cast(successorsDag->getArg(i)); if (!successorInit) { PrintFatalError(def.getLoc(), Twine("undefined kind for successor #") + Twine(i)); } Successor successor(successorInit->getDef()); // Only support variadic successors if it is the last one for now. if (i != e - 1 && successor.isVariadic()) PrintFatalError(def.getLoc(), "only the last successor can be variadic"); successors.push_back({name, successor}); } // Create list of traits, skipping over duplicates: appending to lists in // tablegen is easy, making them unique less so, so dedupe here. if (auto *traitList = def.getValueAsListInit("traits")) { // This is uniquing based on pointers of the trait. SmallPtrSet traitSet; traits.reserve(traitSet.size()); for (auto *traitInit : *traitList) { // Keep traits in the same order while skipping over duplicates. if (traitSet.insert(traitInit).second) traits.push_back(Trait::create(traitInit)); } } populateTypeInferenceInfo(argumentsAndResultsIndex); // Handle regions auto *regionsDag = def.getValueAsDag("regions"); auto *regionsOp = dyn_cast(regionsDag->getOperator()); if (!regionsOp || regionsOp->getDef()->getName() != "region") { PrintFatalError(def.getLoc(), "'regions' must have 'region' directive"); } for (unsigned i = 0, e = regionsDag->getNumArgs(); i < e; ++i) { auto name = regionsDag->getArgNameStr(i); auto *regionInit = dyn_cast(regionsDag->getArg(i)); if (!regionInit) { PrintFatalError(def.getLoc(), Twine("undefined kind for region #") + Twine(i)); } Region region(regionInit->getDef()); if (region.isVariadic()) { // Only support variadic regions if it is the last one for now. if (i != e - 1) PrintFatalError(def.getLoc(), "only the last region can be variadic"); if (name.empty()) PrintFatalError(def.getLoc(), "variadic regions must be named"); } regions.push_back({name, region}); } // Populate the builders. auto *builderList = dyn_cast_or_null(def.getValueInit("builders")); if (builderList && !builderList->empty()) { for (llvm::Init *init : builderList->getValues()) builders.emplace_back(cast(init)->getDef(), def.getLoc()); } else if (skipDefaultBuilders()) { PrintFatalError( def.getLoc(), "default builders are skipped and no custom builders provided"); } LLVM_DEBUG(print(llvm::dbgs())); } auto Operator::getSameTypeAsResult(int index) const -> ArrayRef { assert(allResultTypesKnown()); return resultTypeMapping[index]; } ArrayRef Operator::getLoc() const { return def.getLoc(); } bool Operator::hasDescription() const { return def.getValue("description") != nullptr; } StringRef Operator::getDescription() const { return def.getValueAsString("description"); } bool Operator::hasSummary() const { return def.getValue("summary") != nullptr; } StringRef Operator::getSummary() const { return def.getValueAsString("summary"); } bool Operator::hasAssemblyFormat() const { auto *valueInit = def.getValueInit("assemblyFormat"); return isa(valueInit); } StringRef Operator::getAssemblyFormat() const { return TypeSwitch(def.getValueInit("assemblyFormat")) .Case( [&](auto *init) { return init->getValue(); }); } void Operator::print(llvm::raw_ostream &os) const { os << "op '" << getOperationName() << "'\n"; for (Argument arg : arguments) { if (auto *attr = arg.dyn_cast()) os << "[attribute] " << attr->name << '\n'; else os << "[operand] " << arg.get()->name << '\n'; } } auto Operator::VariableDecoratorIterator::unwrap(llvm::Init *init) -> VariableDecorator { return VariableDecorator(cast(init)->getDef()); } auto Operator::getArgToOperandOrAttribute(int index) const -> OperandOrAttribute { return attrOrOperandMapping[index]; }