// RUN: mlir-hlo-opt %s -hlo-legalize-to-linalg -split-input-file | FILECHECK_OPTS="" FileCheck %s // CHECK: #map = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @float_add func @float_add(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ^{{[a-z0-9_]*}} // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: f32 // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32 // CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = addf %[[ARG0]], %[[ARG1]] // CHECK: linalg.yield %[[RESULT]] %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: integer_add func @integer_add(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: addi %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: complex_add func @complex_add(%lhs: tensor<2x2xcomplex>, %rhs: tensor<2x2xcomplex>) -> tensor<2x2xcomplex> { // CHECK: linalg.generic // CHECK: complex.add %0 = "mhlo.add"(%lhs, %rhs) : (tensor<2x2xcomplex>, tensor<2x2xcomplex>) -> tensor<2x2xcomplex> return %0 : tensor<2x2xcomplex> } // ----- // CHECK-LABEL: func @float_mul func @float_mul(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: mulf %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_mul func @integer_mul(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: muli %0 = "mhlo.multiply"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_remainder func @float_remainder(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: remf %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_remainder func @integer_remainder(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: remi_signed %0 = "mhlo.remainder"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_rsqrt func @float_rsqrt(%operand: tensor<2x2xf32>) -> tensor<2x2xf32> { %tensor_result = "mhlo.rsqrt"(%operand) : (tensor<2x2xf32>) -> tensor<2x2xf32> // CHECK: linalg.generic // CHECK: rsqrt return %tensor_result : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_sub func @float_sub(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: subf %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_sub func @integer_sub(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: subi %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: complex_sub func @complex_sub(%lhs: tensor<2x2xcomplex>, %rhs: tensor<2x2xcomplex>) -> tensor<2x2xcomplex> { // CHECK: linalg.generic // CHECK: complex.sub %0 = "mhlo.subtract"(%lhs, %rhs) : (tensor<2x2xcomplex>, tensor<2x2xcomplex>) -> tensor<2x2xcomplex> return %0 : tensor<2x2xcomplex> } // ----- // CHECK-LABEL: func @float_abs func @float_abs(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: absf %0 = "mhlo.abs"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_exp func @float_exp(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: exp %0 = "mhlo.exponential"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_expm1 func @float_expm1(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: expm1 %0 = "mhlo.exponential_minus_one"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_log func @float_log(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: log %0 = "mhlo.log"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_log1p func @float_log1p(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: log1p %0 = "mhlo.log_plus_one"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_logistic func @float_logistic(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ^bb0(%[[ARG:.*]]: f32, %{{.*}}: f32): // CHECK: %[[C1:.*]] = constant 1.{{.*}}e+00 // CHECK: %[[NEG_ARG:.*]] = negf %[[ARG]] // CHECK: %[[EXP_NEG_ARG:.*]] = math.exp %[[NEG_ARG]] // CHECK: %[[ONE_ADD_EXP_NEG_ARG:.*]] = addf %[[C1]], %[[EXP_NEG_ARG]] // CHECK: %[[RESULT:.*]] = divf %[[C1]], %[[ONE_ADD_EXP_NEG_ARG]] // CHECK: linalg.yield %[[RESULT]] %0 = "mhlo.logistic"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_ceil func @float_ceil(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ceilf %0 = "mhlo.ceil"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @floor func @floor(%input: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: floorf %0 = "mhlo.floor"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_neg func @float_neg(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: negf %0 = "mhlo.negate"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_tanh func @float_tanh(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: tanh %0 = "mhlo.tanh"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @integer_and func @integer_and(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: and %0 = "mhlo.and"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @integer_or func @integer_or(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: or %0 = "mhlo.or"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @integer_xor func @integer_xor(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: xor %0 = "mhlo.xor"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-LABEL: func @float_cmp func @float_cmp(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) { %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "EQ"} : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> return %0 : tensor<2x2xi1> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: i1): // CHECK-NEXT: %[[RESULT:.*]] = cmpf oeq, %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @float_cmp_ne func @float_cmp_ne(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> (tensor<2x2xi1>) { %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "NE"} : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xi1> return %0 : tensor<2x2xi1> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: i1): // CHECK-NEXT: %[[RESULT:.*]] = cmpf une, %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @int_cmp func @int_cmp(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi1> { %0 = "mhlo.compare"(%lhs, %rhs) {comparison_direction = "LT"} : (tensor<2x2xi32>, tensor<2x2xi32>) -> (tensor<2x2xi1>) return %0 : tensor<2x2xi1> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi1> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32, %{{.*}}: i1): // CHECK-NEXT: %[[RESULT:.*]] = cmpi slt, %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @float_cos func @float_cos(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: cos %0 = "mhlo.cosine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @float_sin func @float_sin(%arg0: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: sin %0 = "mhlo.sine"(%arg0) : (tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK-LABEL: func @copy // CHECK-SAME: [[ARG:%[a-zA-Z0-9]+]] func @copy(%input: tensor<2x4x8xf32>) -> tensor<2x4x8xf32> { %0 = "mhlo.copy"(%input) : (tensor<2x4x8xf32>) -> (tensor<2x4x8xf32>) return %0 : tensor<2x4x8xf32> } // CHECK: return [[ARG]] : tensor<2x4x8xf32> // ----- // CHECK-LABEL: func @is_finte func @is_finte(%input: tensor<2x2xf32>) -> tensor<2x2xi1> { %0 = "mhlo.is_finite"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi1> return %0 : tensor<2x2xi1> } // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32 // CHECK-NEXT: %[[POS_INF:.+]] = constant 0x7F800000 : f32 // CHECK-NEXT: %[[ABS_X:.+]] = absf %[[OPERAND_IN]] : f32 // CHECK-NEXT: %[[RESULT:.+]] = cmpf one, %[[ABS_X]], %[[POS_INF]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @select func @select(%pred: tensor<2x2xi1>, %lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %0 = "mhlo.select"(%pred, %lhs, %rhs) : (tensor<2x2xi1>, tensor<2x2xf32>, tensor<2x2xf32>) -> (tensor<2x2xf32>) return %0 : tensor<2x2xf32> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xf32> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[PRED_IN:.*]]: i1, %[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: %[[RESULT:.*]] = select %[[PRED_IN]], %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2) -> ()> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @broadcast_scalar func @broadcast_scalar(%arg: tensor) -> tensor<4x2x1xf32> { %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor) -> tensor<4x2x1xf32> return %0: tensor<4x2x1xf32> } // CHECK: linalg.init_tensor [4, 2, 1] : tensor<4x2x1xf32> // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3, d4, d5)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-LABEL: func @broadcast func @broadcast(%arg: tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> { %0 = "mhlo.broadcast"(%arg) {broadcast_sizes = dense<[4, 2, 1]> : tensor<3xi64>} : (tensor<4x?x16xf32>) -> tensor<4x2x1x4x?x16xf32> return %0: tensor<4x2x1x4x?x16xf32> } // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %{{.*}}, %[[C1]] : tensor<4x?x16xf32> // CHECK: linalg.init_tensor [4, 2, 1, 4, %[[D1]], 16] : tensor<4x2x1x4x?x16xf32> // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, 0)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)> // CHECK-LABEL: func @broadcast_in_dim func @broadcast_in_dim(%operand: tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[4,0,2]> : tensor<3xi64>} : (tensor<5x7x1xf32>) -> tensor<7x10x6x4x5xf32> return %0 : tensor<7x10x6x4x5xf32> } // CHECK: linalg.init_tensor [7, 10, 6, 4, 5] : tensor<7x10x6x4x5xf32> // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.+]] = affine_map<(d0, d1) -> (d0)> // CHECK-DAG: #[[RESULT_MAP:.+]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @broadcast_in_dim_with_one_to_one func @broadcast_in_dim_with_one_to_one( %operand: tensor<1xf32>) -> tensor<1x5xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[0]> : tensor<1xi64>} : (tensor<1xf32>) -> tensor<1x5xf32> return %0 : tensor<1x5xf32> } // CHECK: linalg.init_tensor [1, 5] : tensor<1x5xf32> // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2) -> ()> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @broadcast_scalar func @broadcast_scalar(%operand: tensor) -> tensor<7x10x6xf32> { %0 = "mhlo.broadcast_in_dim"(%operand) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (tensor) -> tensor<7x10x6xf32> return %0 : tensor<7x10x6xf32> } // CHECK: linalg.init_tensor [7, 10, 6] : tensor<7x10x6xf32> // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d0, d3, d2)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-LABEL: func @transpose func @transpose(%arg0: tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> { %0 = "mhlo.transpose"(%arg0) {permutation = dense<[1, 0, 3, 2]> : tensor<4xi64>} : (tensor<2x3x9x5xi32>) -> tensor<3x2x5x9xi32> return %0 : tensor<3x2x5x9xi32> } // CHECK: linalg.generic {{{.*}}indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // ----- // CHECK-LABEL: func @reshape_0D_1D func @reshape_0D_1D(%arg0: tensor) -> tensor<1xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor) -> tensor<1xi32> return %0 : tensor<1xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [] : tensor into tensor<1xi32> // ----- // CHECK-LABEL: func @reshape_1D_0D func @reshape_1D_0D(%arg0: tensor<1xi32>) -> tensor { %0 = "mhlo.reshape"(%arg0) : (tensor<1xi32>) -> tensor return %0 : tensor } // CHECK: linalg.tensor_reshape %{{.*}} [] : tensor<1xi32> into tensor // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d2)> // CHECK-LABEL: func @reshape_3D_2D func @reshape_3D_2D(%arg0: tensor<12x1x42xi32>) -> tensor<12x42xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x1x42xi32>) -> tensor<12x42xi32> return %0 : tensor<12x42xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)> // CHECK-LABEL: func @reshape_4D_2D func @reshape_4D_2D(%arg0: tensor<12x42x1x1xi32>) -> tensor<12x42xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x42x1x1xi32>) -> tensor<12x42xi32> return %0 : tensor<12x42xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)> // CHECK-LABEL: func @reshape_2D_4D func @reshape_2D_4D(%arg0: tensor<12x42xi32>) -> tensor<12x1x42x1xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<12x42xi32>) -> tensor<12x1x42x1xi32> return %0 : tensor<12x1x42x1xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]], #[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-LABEL: func @reshape_3D_4D func @reshape_3D_4D(%arg0: tensor<1x49x16xf32>) -> tensor<1x784x1x1xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x49x16xf32>) -> tensor<1x784x1x1xf32> return %0 : tensor<1x784x1x1xf32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[RESHAPE_MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[RESHAPE_MAP2:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @reshape_4D_3D func @reshape_4D_3D(%arg0: tensor<1x8x10x3xf32>) -> tensor<1x240x1xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x8x10x3xf32>) -> tensor<1x240x1xf32> return %0 : tensor<1x240x1xf32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP1]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[RESHAPE_MAP2]]] // ----- // CHECK-DAG: #[[MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-LABEL: func @reshape1_4D_4D func @reshape1_4D_4D(%arg0: tensor<4x512x1x1xi32>) -> tensor<1x4x1x512xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<4x512x1x1xi32>) -> tensor<1x4x1x512xi32> return %0 : tensor<1x4x1x512xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]] // ----- // CHECK-DAG: #[[MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-LABEL: func @reshape2_4D_4D func @reshape2_4D_4D(%arg0: tensor<4x1x1x1024xi32>) -> tensor<4x1024x1x1xi32> { %0 = "mhlo.reshape"(%arg0) : (tensor<4x1x1x1024xi32>) -> tensor<4x1024x1x1xi32> return %0 : tensor<4x1024x1x1xi32> } // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]] // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP]]] // ----- // CHECK-LABEL: func @minf func @minf(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { %0 = "mhlo.minimum"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xf32> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32, %{{.*}}: f32): // CHECK-NEXT: %[[CMP:.*]] = cmpf olt, %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: %[[MIN:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: %[[ISNAN:.*]] = cmpf uno, %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: %[[NAN:.*]] = constant 0x7FC00000 : f32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[ISNAN]], %[[NAN]], %[[MIN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @maxi func @maxi(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %0 = "mhlo.maximum"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // CHECK: linalg.init_tensor [2, 2] : tensor<2x2xi32> // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32, %{{.*}}: i32): // CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-DAG: #[[MAP:.*]] = affine_map<() -> ()> // CHECK-LABEL: func @add_scalar func @add_scalar(%lhs: tensor, %rhs: tensor) -> tensor { %0 = "mhlo.add"(%lhs, %rhs) : (tensor, tensor) -> tensor return %0 : tensor } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]], #[[MAP]], #[[MAP]]] // CHECK-NEXT: ^bb0(%[[LHS:.*]]: f32, %[[RHS:.*]]: f32, %{{.*}}: f32): // CHECK: %[[RESULT:.*]] = addf %[[LHS]], %[[RHS]] // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- func @reshape_collapse_single_dim (%arg0: tensor<1x28x28x1xf32>) -> tensor<1x784xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x28x28x1xf32>) -> tensor<1x784xf32> return %0 : tensor<1x784xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d3)> // CHECK-LABEL: func @reshape_collapse_single_dim // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]] // ----- func @reshape_collapse(%arg0: tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<2x2x2x3xf32>) -> tensor<2x4x3xf32> return %0 : tensor<2x4x3xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)> // CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)> // CHECK-LABEL: func @reshape_collapse // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]]] // ----- func @reshape_expand(%arg0: tensor<2x8xf32>) -> tensor<2x4x2xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<2x8xf32>) -> tensor<2x4x2xf32> return %0 : tensor<2x4x2xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)> // CHECK-LABEL: func @reshape_expand // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]]] // ----- func @reshape_single_expand(%arg0 : tensor<8xf32>) -> tensor<1x4x2xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<8xf32>) -> tensor<1x4x2xf32> return %0 : tensor<1x4x2xf32> } // CHECK: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @reshape_single_expand // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]]] // ----- func @reshape_multiple_collapse (%arg0 : tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> { %0 = "mhlo.reshape"(%arg0) : (tensor<1x2x2x5x3x2xf32>) -> tensor<1x4x5x6xf32> return %0 : tensor<1x4x5x6xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d1, d2)> // CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d3)> // CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d5)> // CHECK-LABEL: func @reshape_multiple_collapse // CHECK: linalg.tensor_reshape %{{.*}} [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // ----- // CHECK-LABEL: func @convert_i1_to_f32 func @convert_i1_to_f32(%input: tensor<2x2xi1>) -> tensor<2x2xf32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi1>) -> tensor<2x2xf32> return %result : tensor<2x2xf32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i1, %{{.*}}: f32): // CHECK-NEXT: %[[RESULT:.*]] = uitofp %[[OPERAND_IN]] : i1 to f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @convert_i1_to_i32 func @convert_i1_to_i32(%input: tensor<2x2xi1>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi1>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i1, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = zexti %[[OPERAND_IN]] : i1 to i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-LABEL: func @convert_i32_to_f32 func @convert_i32_to_f32(%input: tensor<2x2xi32>) -> tensor<2x2xf32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xf32> return %result : tensor<2x2xf32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32, %{{.*}}: f32): // CHECK-NEXT: %[[RESULT:.*]] = sitofp %[[OPERAND_IN]] : i32 to f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @convert_i16_to_i32 func @convert_i16_to_i32(%input: tensor<2x2xi16>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%input) : (tensor<2x2xi16>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i16, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = sexti %[[OPERAND_IN]] : i16 to i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-LABEL: func @convert_i32_to_i16 func @convert_i32_to_i16(%input: tensor<2x2xi32>) -> tensor<2x2xi16> { %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi16> return %result : tensor<2x2xi16> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32, %{{.*}}: i16): // CHECK-NEXT: %[[RESULT:.*]] = trunci %[[OPERAND_IN]] : i32 to i16 // CHECK-NEXT: linalg.yield %[[RESULT]] : i16 // ----- // CHECK-LABEL: func @convert_f32_to_f64 func @convert_f32_to_f64(%input: tensor<2x2xf32>) -> tensor<2x2xf64> { %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xf64> return %result : tensor<2x2xf64> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32, %{{.*}}: f64): // CHECK-NEXT: %[[RESULT:.*]] = fpext %[[OPERAND_IN]] : f32 to f64 // CHECK-NEXT: linalg.yield %[[RESULT]] : f64 // ----- // CHECK-LABEL: func @convert_f64_to_f32 func @convert_f64_to_f32(%input: tensor<2x2xf64>) -> tensor<2x2xf32> { %result = "mhlo.convert"(%input) : (tensor<2x2xf64>) -> tensor<2x2xf32> return %result : tensor<2x2xf32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f64, %{{.*}}: f32): // CHECK-NEXT: %[[RESULT:.*]] = fptrunc %[[OPERAND_IN]] : f64 to f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- // CHECK-LABEL: func @convert_i32_to_i1 func @convert_i32_to_i1(%input: tensor<2x2xi32>) -> tensor<2x2xi1> { %result = "mhlo.convert"(%input) : (tensor<2x2xi32>) -> tensor<2x2xi1> return %result : tensor<2x2xi1> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: i32, %{{.*}}: i1): // CHECK-NEXT: %[[ZERO:.*]] = constant 0 : i32 // CHECK-NEXT: %[[RESULT:.*]] = cmpi ne, %[[OPERAND_IN]], %[[ZERO]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @convert_f32_to_i1 func @convert_f32_to_i1(%input: tensor<2x2xf32>) -> tensor<2x2xi1> { %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi1> return %result : tensor<2x2xi1> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32, %{{.*}}: i1): // CHECK-NEXT: %[[ZERO:.*]] = constant 0.000000e+00 : f32 // CHECK-NEXT: %[[RESULT:.*]] = cmpf une, %[[OPERAND_IN]], %[[ZERO]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- // CHECK-LABEL: func @convert_f32_to_i32 func @convert_f32_to_i32(%input: tensor<2x2xf32>) -> tensor<2x2xi32> { %result = "mhlo.convert"(%input) : (tensor<2x2xf32>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[OPERAND_IN:.*]]: f32, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = fptosi %[[OPERAND_IN]] : f32 to i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1) -> (d0, -d1 + 2)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @reverse func @reverse(%input: tensor<2x3xf32>) -> tensor<2x3xf32> { %result = "mhlo.reverse"(%input) { dimensions = dense<1> : tensor<1xi64> } : (tensor<2x3xf32>) -> tensor<2x3xf32> return %result : tensor<2x3xf32> } // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // ----- // CHECK: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @iota func @iota() -> tensor<7x10xf32> { %result = "mhlo.iota"() {iota_dimension = 1 : i64} : () -> (tensor<7x10xf32>) return %result : tensor<7x10xf32> } // CHECK: linalg.init_tensor // CHECK: linalg.indexed_generic // CHECK-SAME: indexing_maps = [#[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[D0:.*]]: index, %[[D1:.*]]: index, %{{.*}}: f32): // CHECK-NEXT: %[[INT_CAST:.*]] = index_cast %[[D1]] : index to i32 // CHECK-NEXT: %[[FLOAT_CAST:.*]] = sitofp %[[INT_CAST]] : i32 to f32 // CHECK-NEXT: linalg.yield %[[FLOAT_CAST]] : f32 // ----- // CHECK: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @iota // CHECK-SAME: %[[SHAPE:.*]]: tensor func @iota(%shape: tensor) -> tensor { %result = "mhlo.dynamic_iota"(%shape) {iota_dimension = 1 : i64} : (tensor) -> (tensor) return %result : tensor } // CHECK: %[[E1:.*]] = tensor.extract %[[SHAPE]][%c0] : tensor // CHECK: %[[I1:.*]] = index_cast %[[E1]] : i32 to index // CHECK: %[[E2:.*]] = tensor.extract %[[SHAPE]][%c1] : tensor // CHECK: %[[I2:.*]] = index_cast %[[E2]] : i32 to index // CHECK: linalg.init_tensor [%[[I1]], %[[I2]], 8] : tensor // CHECK: linalg.indexed_generic // CHECK-SAME: indexing_maps = [#[[RESULT_MAP]]] // CHECK-NEXT: ^bb0(%[[D0:.*]]: index, %[[D1:.*]]: index, %[[D2:.*]]: index, %{{.*}}: f32): // CHECK-NEXT: %[[INT_CAST:.*]] = index_cast %[[D1]] : index to i32 // CHECK-NEXT: %[[FLOAT_CAST:.*]] = sitofp %[[INT_CAST]] : i32 to f32 // CHECK-NEXT: linalg.yield %[[FLOAT_CAST]] : f32 // ----- func @shift_left(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_left"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK-LABEL: func @shift_left // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = shift_left %[[LHS]], %[[RHS]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @shift_right_arithmetic(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_right_arithmetic"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK-LABEL: func @shift_right_arithmetic // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = shift_right_signed %[[LHS]], %[[RHS]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @shift_right_logical(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { %result = "mhlo.shift_right_logical"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %result : tensor<2x2xi32> } // CHECK-LABEL: func @shift_right_logical // CHECK: linalg.init_tensor // CHECK: linalg.generic // CHECK-NEXT: ^bb0(%[[LHS:.*]]: i32, %[[RHS:.*]]: i32, %{{.*}}: i32): // CHECK-NEXT: %[[RESULT:.*]] = shift_right_unsigned %[[LHS]], %[[RHS]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- // CHECK-LABEL: func @constant func @constant() { %result = "mhlo.constant"() { value = dense<10> : tensor } : () -> (tensor) return } // CHECK: %[[CONSTANT:.*]] = constant dense<10> : tensor // ----- // CHECK: #map = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @float_pow func @float_pow(%lhs: tensor<2x2xf32>, %rhs: tensor<2x2xf32>) -> tensor<2x2xf32> { // CHECK: linalg.generic // CHECK: ^{{[a-z0-9_]*}} // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: f32 // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: f32 // CHECK: %[[RESULT:[a-zA-Z0-9_]*]] = math.powf %[[ARG0]], %[[ARG1]] // CHECK: linalg.yield %[[RESULT]] %0 = "mhlo.power"(%lhs, %rhs) : (tensor<2x2xf32>, tensor<2x2xf32>) -> tensor<2x2xf32> return %0 : tensor<2x2xf32> } // ----- // CHECK: #map = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @integer_pow func @integer_pow(%lhs: tensor<2x2xi32>, %rhs: tensor<2x2xi32>) -> tensor<2x2xi32> { // CHECK: linalg.generic // CHECK: ^{{[a-z0-9_]*}} // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: i32 // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: i32 // CHECK: %[[FOR_RESULT:[a-zA-Z0-9_]*]]:3 = scf.for {{.*}} to %c6 step %c1 // CHECK-SAME: iter_args( // CHECK-SAME: %[[ITER0:.*]] = %c1 // CHECK-SAME: %[[ITER1:.*]] = %[[ARG0]] // CHECK-SAME: %[[ITER2:.*]] = %[[ARG1]] // CHECK-SAME: ) -> (i32, i32, i32) { // CHECK: %[[AND:[a-zA-Z0-9_]*]] = and %[[ITER2]], %c1 // CHECK: %[[COND:[a-zA-Z0-9_]*]] = cmpi eq, %[[AND]], %c1 // CHECK: %[[MUL:[a-zA-Z0-9_]*]] = muli %[[ITER0]], %[[ITER1]] // CHECK: %[[ACCUM:[a-zA-Z0-9_]*]] = select %[[COND]], %[[MUL]], %[[ITER0]] // CHECK: %[[BASE:[a-zA-Z0-9_]*]] = muli %[[ITER1]], %[[ITER1]] // CHECK: %[[EXP:[a-zA-Z0-9_]*]] = shift_right_unsigned %[[ITER2]], %c1 // CHECK: scf.yield %[[ACCUM]], %[[BASE]], %[[EXP]] // CHECK: %[[RHS_PARITY:.*]] = remi_signed %[[ARG1]], %c2 // CHECK: %[[RHS_EVEN:.*]] = cmpi eq, %[[RHS_PARITY]], %c0 // CHECK: %[[RHS_NEG:.*]] = cmpi slt, %[[ARG1]], %c0 // CHECK: %[[LHS_ONE:.*]] = cmpi eq, %[[ARG0]], %c1 // CHECK: %[[LHS_NEG_ONE:.*]] = cmpi eq, %[[ARG0]], %c-1 // CHECK: %[[VAL5:.*]] = select %[[LHS_ONE]], %c1_i32, %c0 // CHECK: %[[VAL6:.*]] = select %[[RHS_EVEN]], %c1{{.*}}, %c-1 // CHECK: %[[VAL7:.*]] = select %[[LHS_NEG_ONE]], %[[VAL6]], %[[VAL5]] // CHECK: %[[RESULT:.*]] = select %[[RHS_NEG]], %[[VAL7]], %[[FOR_RESULT]]#0 // CHECK: linalg.yield %[[RESULT]] %0 = "mhlo.power"(%lhs, %rhs) : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> return %0 : tensor<2x2xi32> } // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0) -> ()> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0) -> (d0)> // CHECK-LABEL: func @dynamic_broadcast_in_dim( // CHECK-SAME: [[SHAPE:%.*]]: tensor<1xindex> func @dynamic_broadcast_in_dim(%shape: tensor<1xindex>) -> tensor { %cst = mhlo.constant dense<0x7F800000> : tensor %result = "mhlo.dynamic_broadcast_in_dim"(%cst, %shape) { broadcast_dimensions = dense<> : tensor<0xi64> } : (tensor, tensor<1xindex>) -> tensor return %result : tensor } // CHECK: [[CST:%.*]] = constant // CHECK: [[INIT:%.*]] = linalg.init_tensor // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-SAME: ins([[CST]] : tensor) outs([[INIT]] : tensor) // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %[[RESULT:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1) -> ()> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @dynamic_broadcast_in_dim( // CHECK-SAME: [[SCALAR:%.*]]: tensor // CHECK-SAME: [[SHAPE:%.*]]: tensor<2xindex> func @dynamic_broadcast_in_dim(%scalar: tensor, %shape: tensor<2xindex>) -> tensor { %result = "mhlo.dynamic_broadcast_in_dim"(%scalar, %shape) { broadcast_dimensions = dense<> : tensor<0xi64> } : (tensor, tensor<2xindex>) -> tensor return %result : tensor } // CHECK: [[INIT:%.*]] = linalg.init_tensor // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-SAME: ins([[SCALAR]] : tensor) outs([[INIT]] : tensor) // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %[[RESULT:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- // CHECK-DAG: #[[OPERAND_MAP:.*]] = affine_map<(d0, d1, d2) -> (d1)> // CHECK-DAG: #[[RESULT_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-LABEL: func @dynamic_broadcast_in_dim( // CHECK-SAME: [[VECTOR:%.*]]: tensor<42xf32> // CHECK-SAME: [[SHAPE:%.*]]: tensor<3xindex> func @dynamic_broadcast_in_dim(%vector: tensor<42xf32>, %shape: tensor<3xindex>) -> tensor { %result = "mhlo.dynamic_broadcast_in_dim"(%vector, %shape) { broadcast_dimensions = dense<1> : tensor<1xi64> } : (tensor<42xf32>, tensor<3xindex>) -> tensor return %result : tensor } // CHECK: [[INIT:%.*]] = linalg.init_tensor // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[OPERAND_MAP]], #[[RESULT_MAP]]] // CHECK-SAME: ins([[VECTOR]] : tensor<42xf32>) outs([[INIT]] : tensor) // CHECK-NEXT: ^bb0(%[[OPERAND:.*]]: f32, %[[RESULT:.*]]: f32): // CHECK-NEXT: linalg.yield %[[OPERAND]] : f32 // ----- func @dot_matmul(%arg0: tensor<2x3xf32>, %arg1: tensor<3x?xf32>) -> tensor<2x?xf32> { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xf32>, tensor<3x?xf32>) -> tensor<2x?xf32> return %0 : tensor<2x?xf32> } // CHECK-LABEL: func @dot_matmul( // CHECK-SAME: %[[ARG0:.*]]: tensor<2x3xf32>, %[[ARG1:.*]]: tensor<3x?xf32>) // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG1]], %[[C1]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [2, %[[D1]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3xf32>, tensor<3x?xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x?xf32>) func @dot_matmul_i8_i8_i32(%arg0: tensor<2x3xi8>, %arg1: tensor<3x?xi8>) -> tensor<2x?xi32> { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xi8>, tensor<3x?xi8>) -> tensor<2x?xi32> return %0 : tensor<2x?xi32> } // CHECK-LABEL: func @dot_matmul_i8_i8_i32( // CHECK-SAME: %[[ARG0:.*]]: tensor<2x3xi8>, %[[ARG1:.*]]: tensor<3x?xi8>) // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG1]], %[[C1]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [2, %[[D1]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3xi8>, tensor<3x?xi8>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x?xi32>) // ----- func @dot_matmul_i16_i16_i32(%arg0: tensor<2x3xi16>, %arg1: tensor<3x?xi16>) -> tensor<2x?xi32> { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xi16>, tensor<3x?xi16>) -> tensor<2x?xi32> return %0 : tensor<2x?xi32> } // CHECK-LABEL: func @dot_matmul_i16_i16_i32( // CHECK-SAME: %[[ARG0:.*]]: tensor<2x3xi16>, %[[ARG1:.*]]: tensor<3x?xi16>) // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG1]], %[[C1]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [2, %[[D1]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3xi16>, tensor<3x?xi16>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x?xi32>) // ----- func @dot_matmul_i32_i32_i32(%arg0: tensor<2x3xi32>, %arg1: tensor<3x?xi32>) -> tensor<2x?xi32> { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor<2x3xi32>, tensor<3x?xi32>) -> tensor<2x?xi32> return %0 : tensor<2x?xi32> } // CHECK-LABEL: func @dot_matmul_i32_i32_i32( // CHECK-SAME: %[[ARG0:.*]]: tensor<2x3xi32>, %[[ARG1:.*]]: tensor<3x?xi32>) // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG1]], %[[C1]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [2, %[[D1]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x3xi32>, tensor<3x?xi32>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x?xi32>) // ----- func @dot_matvec(%arg0: tensor, %arg1: tensor<3xf32>) -> tensor { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor, tensor<3xf32>) -> tensor return %0 : tensor } // CHECK-LABEL: func @dot_matvec( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor<3xf32>) // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[D0:.*]] = memref.dim %[[ARG0]], %[[C0]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.matvec // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor<3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor) // ----- func @dot_dot(%arg0: tensor, %arg1: tensor) -> tensor { %0 = "mhlo.dot"(%arg0, %arg1) : (tensor, tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func @dot_dot( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor) // CHECK: %[[INIT:.*]] = linalg.init_tensor [] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.dot // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor) // CHECK-SAME: outs(%[[FILL]] : tensor) // ----- func @dot_general_batch_matmul(%arg0: tensor, %arg1: tensor) -> tensor { %0 = "mhlo.dot_general"(%arg0, %arg1) { dot_dimension_numbers = { lhs_batching_dimensions = dense<0> : tensor<1xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<0> : tensor<1xi64>, rhs_contracting_dimensions = dense<1> : tensor<1xi64> }, precision_config = ["DEFAULT", "DEFAULT"] } : (tensor, tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func @dot_general_batch_matmul( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor) // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[D0:.*]] = memref.dim %[[ARG0]], %[[C0]] // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG0]], %[[C1]] // CHECK: %[[C2:.*]] = constant 2 : index // CHECK: %[[D2:.*]] = memref.dim %[[ARG1]], %[[C2]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]], %[[D1]], %[[D2]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.batch_matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor) // CHECK-SAME: outs(%[[FILL]] : tensor) // ----- func @dot_general_batch_matmul_i8_i8_i32(%arg0: tensor, %arg1: tensor) -> tensor { %0 = "mhlo.dot_general"(%arg0, %arg1) { dot_dimension_numbers = { lhs_batching_dimensions = dense<0> : tensor<1xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<0> : tensor<1xi64>, rhs_contracting_dimensions = dense<1> : tensor<1xi64> }, precision_config = ["DEFAULT", "DEFAULT"] } : (tensor, tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func @dot_general_batch_matmul_i8_i8_i32( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor) // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[D0:.*]] = memref.dim %[[ARG0]], %[[C0]] // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG0]], %[[C1]] // CHECK: %[[C2:.*]] = constant 2 : index // CHECK: %[[D2:.*]] = memref.dim %[[ARG1]], %[[C2]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]], %[[D1]], %[[D2]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.batch_matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor) // CHECK-SAME: outs(%[[FILL]] : tensor) // ----- func @dot_general_batch_matmul_i16_i16_i32(%arg0: tensor, %arg1: tensor) -> tensor { %0 = "mhlo.dot_general"(%arg0, %arg1) { dot_dimension_numbers = { lhs_batching_dimensions = dense<0> : tensor<1xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<0> : tensor<1xi64>, rhs_contracting_dimensions = dense<1> : tensor<1xi64> }, precision_config = ["DEFAULT", "DEFAULT"] } : (tensor, tensor) -> tensor return %0 : tensor } // CHECK-LABEL: func @dot_general_batch_matmul_i16_i16_i32( // CHECK-SAME: %[[ARG0:.*]]: tensor, %[[ARG1:.*]]: tensor) // CHECK: %[[C0:.*]] = constant 0 : index // CHECK: %[[D0:.*]] = memref.dim %[[ARG0]], %[[C0]] // CHECK: %[[C1:.*]] = constant 1 : index // CHECK: %[[D1:.*]] = memref.dim %[[ARG0]], %[[C1]] // CHECK: %[[C2:.*]] = constant 2 : index // CHECK: %[[D2:.*]] = memref.dim %[[ARG1]], %[[C2]] // CHECK: %[[INIT:.*]] = linalg.init_tensor [%[[D0]], %[[D1]], %[[D2]]] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: linalg.batch_matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor) // CHECK-SAME: outs(%[[FILL]] : tensor) // ----- func @dot_general_batch_matmul_large (%arg0: tensor<2x16x32xf32>, %arg1: tensor<2x32x32xf32>) -> tensor<2x16x32xf32> { %0 = "mhlo.dot_general"(%arg0, %arg1) { dot_dimension_numbers = { lhs_batching_dimensions = dense<0> : tensor<1xi64>, lhs_contracting_dimensions = dense<2> : tensor<1xi64>, rhs_batching_dimensions = dense<0> : tensor<1xi64>, rhs_contracting_dimensions = dense<1> : tensor<1xi64>}, precision_config = ["DEFAULT", "DEFAULT"]} : (tensor<2x16x32xf32>, tensor<2x32x32xf32>) -> tensor<2x16x32xf32> return %0 : tensor<2x16x32xf32> } // CHECK-LABEL: func @dot_general_batch_matmul_large( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]]: tensor<2x16x32xf32>, // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]]: tensor<2x32x32xf32>) // CHECK: %[[INIT:.*]] = linalg.init_tensor [2, 16, 32] // CHECK: %[[FILL:.*]] = linalg.fill(%[[INIT]] // CHECK: %[[DOT:.*]] = linalg.batch_matmul // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<2x16x32xf32>, tensor<2x32x32xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x16x32xf32>) // ----- // CHECK-LABEL: @clamp // CHECK-SAME: %[[LB:.*]]: tensor<4xf32>, %[[X:.*]]: tensor<4xf32>, %[[UB:.*]]: tensor<4xf32> func @clamp(%lb : tensor<4xf32>, %x : tensor<4xf32>, %ub : tensor<4xf32>) -> tensor<4xf32> { // CHECK: %[[INIT:.*]] = linalg.init_tensor // CHECK: %[[RESULT:.*]] = linalg.generic {{.*}} ins(%[[LB]], %[[X]], %[[UB]] : tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) outs(%[[INIT]] : tensor<4xf32>) // CHECK: ^bb0(%[[SCALAR_LB:.*]]: f32, %[[SCALAR_X:.*]]: f32, %[[SCALAR_UB:.*]]: f32, %{{.*}}: f32): // CHECK: cmpf olt // CHECK: select // CHECK: cmpf uno // CHECK: select // CHECK: cmpf ogt // CHECK: select // CHECK: cmpf uno // CHECK: %[[MAX_X2_LB:.*]] = select // CHECK: linalg.yield %[[MAX_X2_LB]] // CHECK: } -> tensor<4xf32> // CHECK: return %[[RESULT]] : tensor<4xf32> %0 = "mhlo.clamp"(%lb, %x, %ub) : (tensor<4xf32>, tensor<4xf32>, tensor<4xf32>) -> tensor<4xf32> return %0 : tensor<4xf32> } // ----- func @reduce_add(%arg0: tensor<5x4xi32>, %arg1: tensor) -> tensor<5xi32> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.add %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor) -> tensor<5xi32> return %0 : tensor<5xi32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_add // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @reduce_minimum(%arg0: tensor<5x4xi32>, %arg1: tensor) -> tensor<5xi32> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.minimum %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor) -> tensor<5xi32> return %0 : tensor<5xi32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_minimum // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[CMP:.*]] = cmpi slt, %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @reduce_maximum(%arg0: tensor<5x4xi32>, %arg1: tensor) -> tensor<5xi32> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.maximum %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi32>, tensor) -> tensor<5xi32> return %0 : tensor<5xi32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_maximum // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @reduce_and(%arg0: tensor<5x4xi1>, %arg1: tensor) -> tensor<5xi1> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.and %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi1>, tensor) -> tensor<5xi1> return %0 : tensor<5xi1> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_and // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi1>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi1>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i1, %[[RHS_IN:.*]]: i1): // CHECK-NEXT: %[[RESULT:.*]] = and %[[LHS_IN]], %[[RHS_IN]] : i1 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- func @reduce_or(%arg0: tensor<5x4xi1>, %arg1: tensor) -> tensor<5xi1> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.or %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<5x4xi1>, tensor) -> tensor<5xi1> return %0 : tensor<5xi1> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_or // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [5] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi1>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<5xi1>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i1, %[[RHS_IN:.*]]: i1): // CHECK-NEXT: %[[RESULT:.*]] = or %[[LHS_IN]], %[[RHS_IN]] : i1 // CHECK-NEXT: linalg.yield %[[RESULT]] : i1 // ----- func @reduce_dim0(%arg0: tensor<5x4xi32>, %arg1: tensor) -> tensor<4xi32> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.maximum %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<0> : tensor<1xi64>} : (tensor<5x4xi32>, tensor) -> tensor<4xi32> return %0 : tensor<4xi32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d1, d0)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_dim0 // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [4] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4xi32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<4xi32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[CMP:.*]] = cmpi sgt, %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: %[[RESULT:.*]] = select %[[CMP]], %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @reduce_init_const(%arg0: tensor<1x10xf32>) -> tensor<1xf32> { %cst = constant dense<0xFF800000> : tensor %0 = "mhlo.reduce"(%arg0, %cst) ({ ^bb0(%arg1: tensor, %arg2: tensor): // no predecessors %1 = mhlo.add %arg1, %arg2 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor<1x10xf32>, tensor) -> tensor<1xf32> return %0 : tensor<1xf32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK-LABEL: @reduce_init_const // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [1] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %{{.*}}) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<1x10xf32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<1xf32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: f32, %[[RHS_IN:.*]]: f32): // CHECK-NEXT: %[[RESULT:.*]] = addf %[[LHS_IN]], %[[RHS_IN]] : f32 // CHECK-NEXT: linalg.yield %[[RESULT]] : f32 // ----- func @reduce_multi_dimensions(%arg0: tensor<5x4x3xi32>, %arg1: tensor) -> tensor<4xi32> { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg2: tensor, %arg3: tensor): %1 = mhlo.add %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<[0, 2]> : tensor<2xi64>} : (tensor<5x4x3xi32>, tensor) -> tensor<4xi32> return %0 : tensor<4xi32> } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1, d2) -> (d1, d0, d2)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-LABEL: @reduce_multi_dimensions // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [4] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor<5x4x3xi32>) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor<4xi32>) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @reduce_dynamic(%arg0: tensor, %arg1: tensor) -> tensor { %0 = "mhlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg3: tensor, %arg4 : tensor): %1 = mhlo.add %arg3, %arg4 : tensor "mhlo.return"(%1) : (tensor) -> () }) {dimensions = dense<1> : tensor<1xi64>} : (tensor, tensor) -> tensor return %0 : tensor } // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0, d1) -> (d0)> // CHECK: func @reduce_dynamic(%[[ARG0:.*]]: tensor // CHECK-DAG: %[[INIT:.*]] = tensor.extract %{{.*}} : tensor // CHECK-DAG: %[[C0:.*]] = constant 0 : index // CHECK-DAG: %[[DIM1:.*]] = memref.dim %[[ARG0]], %[[C0]] : tensor // CHECK-DAG: %[[INIT_TENSOR:.*]] = linalg.init_tensor [%[[DIM1]]] // CHECK-DAG: %[[FILL_TENSOR:.*]] = linalg.fill(%[[INIT_TENSOR]], %[[INIT]]) // CHECK: linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "reduction"] // CHECK-SAME: ins(%{{.*}}tensor) // CHECK-SAME: outs(%[[FILL_TENSOR]] : tensor) // CHECK-NEXT: ^bb0(%[[LHS_IN:.*]]: i32, %[[RHS_IN:.*]]: i32): // CHECK-NEXT: %[[RESULT:.*]] = addi %[[LHS_IN]], %[[RHS_IN]] : i32 // CHECK-NEXT: linalg.yield %[[RESULT]] : i32 // ----- func @slice_whole_stride(%arg0: tensor<3x4xi32>) -> tensor<1x4xi32> { %0 = "mhlo.slice"(%arg0) { start_indices = dense<[1, 0]> : tensor<2xi64>, limit_indices = dense<[2, 4]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } : (tensor<3x4xi32>) -> tensor<1x4xi32> return %0 : tensor<1x4xi32> } // CHECK-LABEL: func @slice_whole_stride // CHECK: subtensor %{{.*}}[1, 0] [1, 4] [1, 1] : tensor<3x4xi32> to tensor<1x4xi32> // ----- func @slice_stride_part(%arg0: tensor<3x4xi32>) -> tensor<1x2xi32> { %0 = "mhlo.slice"(%arg0) { start_indices = dense<[1, 1]> : tensor<2xi64>, limit_indices = dense<[2, 3]> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } : (tensor<3x4xi32>) -> tensor<1x2xi32> return %0 : tensor<1x2xi32> } // CHECK-LABEL: func @slice_stride_part // CHECK: subtensor %{{.*}}[1, 1] [1, 2] [1, 1] : tensor<3x4xi32> to tensor<1x2xi32> // ----- func @dynamic_slice(%arg: tensor<3x4xf32>, %start1: tensor, %start2: tensor) -> tensor<1x4xf32> { %0 = "mhlo.dynamic-slice"(%arg, %start1, %start2) { slice_sizes = dense<[1, 4]> : tensor<2xi64> } : (tensor<3x4xf32>, tensor, tensor) -> tensor<1x4xf32> return %0 : tensor<1x4xf32> } // CHECK-LABEL: func @dynamic_slice // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]*]] // CHECK: %[[C0:.*]] = constant 0 : i64 // CHECK: %[[SCALAR1:.*]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[UB1:.*]] = constant 2 : i64 // CHECK: %[[COND1:.*]] = cmpi slt, %[[SCALAR1]], %[[UB1]] : i64 // CHECK: %[[T1:.*]] = select %[[COND1]], %[[SCALAR1]], %[[UB1]] : i64 // CHECK: %[[COND2:.*]] = cmpi sgt, %[[T1]], %[[C0]] : i64 // CHECK: %[[CLAMPED1:.*]] = select %[[COND2]], %[[T1]], %[[C0]] : i64 // CHECK: %[[START1:.*]] = index_cast %[[CLAMPED1]] : i64 to index // CHECK: %[[SCALAR2:.*]] = tensor.extract %[[ARG2]][] : tensor // CHECK: %[[UB2:.*]] = constant 0 : i64 // CHECK: %[[COND3:.*]] = cmpi slt, %[[SCALAR2]], %[[UB2]] : i64 // CHECK: %[[T2:.*]] = select %[[COND3]], %[[SCALAR2]], %[[UB2]] : i64 // CHECK: %[[COND4:.*]] = cmpi sgt, %[[T2]], %[[C0]] : i64 // CHECK: %[[CLAMPED2:.*]] = select %[[COND4]], %[[T2]], %[[C0]] : i64 // CHECK: %[[START2:.*]] = index_cast %[[CLAMPED2]] : i64 to index // CHECK: subtensor %[[ARG0]][%[[START1]], %[[START2]]] [1, 4] [1, 1] // ----- func @pad_cst(%arg0: tensor<12x4xf32>) -> tensor<18x12xf32> { %0 = constant dense<0.0> : tensor %1 = "mhlo.pad"(%arg0, %0) { edge_padding_high = dense<[2, 3]> : tensor<2xi64>, edge_padding_low = dense<[4, 5]> : tensor<2xi64>, interior_padding = dense<0> : tensor<2xi64> } : (tensor<12x4xf32>, tensor) -> tensor<18x12xf32> return %1 : tensor<18x12xf32> } // CHECK-LABEL: func @pad_cst // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-DAG: %[[CST:.+]] = constant dense<0.000000e+00> : tensor // CHECK-DAG: %[[PAD:.+]] = tensor.extract %[[CST]][] : tensor // CHECK-DAG: %[[C4:.+]] = constant 4 : index // CHECK-DAG: %[[C2:.+]] = constant 2 : index // CHECK-DAG: %[[C5:.+]] = constant 5 : index // CHECK-DAG: %[[C3:.+]] = constant 3 : index // CHECK: linalg.pad_tensor %[[ARG0]] low[%[[C4]], %[[C5]]] high[%[[C2]], %[[C3]]] // CHECK: linalg.yield %[[PAD]] : f32 // CHECK: } : tensor<12x4xf32> to tensor<18x12xf32> // ----- func @pad_tensor(%arg0: tensor<12x4xf32>, %arg1: tensor) -> tensor<18x12xf32> { %0 = "mhlo.pad"(%arg0, %arg1) { edge_padding_high = dense<[2, 3]> : tensor<2xi64>, edge_padding_low = dense<[4, 5]> : tensor<2xi64>, interior_padding = dense<0> : tensor<2xi64> } : (tensor<12x4xf32>, tensor) -> tensor<18x12xf32> return %0 : tensor<18x12xf32> } // CHECK-LABEL: func @pad_tensor // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK-DAG: %[[C4:.+]] = constant 4 : index // CHECK-DAG: %[[C2:.+]] = constant 2 : index // CHECK-DAG: %[[C5:.+]] = constant 5 : index // CHECK-DAG: %[[C3:.+]] = constant 3 : index // CHECK-DAG: %[[PAD:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: linalg.pad_tensor %[[ARG0]] low[%[[C4]], %[[C5]]] high[%[[C2]], %[[C3]]] // CHECK: linalg.yield %[[PAD]] : f32 // CHECK: } : tensor<12x4xf32> to tensor<18x12xf32> // ----- func @linalg.conv_1d_input_nwc_filter_wcf(%arg0: tensor, %arg1: tensor<2x?x?xf32>) -> tensor { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 2 : i64, input_spatial_dimensions = dense<[1]> : tensor<1xi64>, kernel_input_feature_dimension = 1 : i64, kernel_output_feature_dimension = 2 : i64, kernel_spatial_dimensions = dense<[0]> : tensor<1xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 2 : i64, output_spatial_dimensions = dense<[1]> : tensor<1xi64> }, feature_group_count = 1 : i64, padding = dense<[[0], [0]]> : tensor<2x1xi64>, rhs_dilation = dense<1> : tensor<1xi64>, window_strides = dense<1> : tensor<1xi64> } : (tensor, tensor<2x?x?xf32>) -> tensor return %0 : tensor } // CHECK-LABEL: func @linalg.conv_1d_input_nwc_filter_wcf // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[C0:.+]] = constant 0 : index // CHECK: %[[DIM0:.+]] = memref.dim %[[ARG0]], %[[C0]] : tensor // CHECK: %[[C2:.+]] = constant 2 : index // CHECK: %[[DIM2:.+]] = memref.dim %[[ARG1]], %[[C2]] : tensor<2x?x?xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[DIM0]], 7, %[[DIM2]]] // CHECK: %[[ZERO:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[ZERO]]) // CHECK: linalg.conv_1d_input_nwc_filter_wcf // CHECK-SAME: {dilations = dense<1> : tensor<1xi64> // CHECK-SAME: strides = dense<1> : tensor<1xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor<2x?x?xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor) -> tensor // ----- func @conv_2d_input_nhwc_filter_hwcf(%arg0: tensor, %arg1: tensor<3x2x?x?xf32>) -> tensor { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 1 : i64, padding = dense<[[0, 0], [0, 0]]> : tensor<2x2xi64>, rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64> } : (tensor, tensor<3x2x?x?xf32>) -> tensor return %0 : tensor } // CHECK-LABEL: func @conv_2d_input_nhwc_filter_hwcf // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[C0:.+]] = constant 0 : index // CHECK: %[[DIM0:.+]] = memref.dim %[[ARG0]], %[[C0]] : tensor // CHECK: %[[C3:.+]] = constant 3 : index // CHECK: %[[DIM3:.+]] = memref.dim %[[ARG1]], %[[C3]] : tensor<3x2x?x?xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[DIM0]], 2, 3, %[[DIM3]]] // CHECK: %[[ZERO:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[ZERO]]) // CHECK: linalg.conv_2d_input_nhwc_filter_hwcf // CHECK-SAME: {dilations = dense<1> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor<3x2x?x?xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor) -> tensor // ----- func @conv_3d_input_ndhwc_filter_dhwcf(%arg0: tensor, %arg1: tensor<2x2x2x?x?xf32>) -> tensor { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 4 : i64, input_spatial_dimensions = dense<[1, 2, 3]> : tensor<3xi64>, kernel_input_feature_dimension = 3 : i64, kernel_output_feature_dimension = 4 : i64, kernel_spatial_dimensions = dense<[0, 1, 2]> : tensor<3xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 4 : i64, output_spatial_dimensions = dense<[1, 2, 3]> : tensor<3xi64> }, feature_group_count = 1 : i64, padding = dense<[[0, 0, 0], [0, 0, 0]]> : tensor<2x3xi64>, rhs_dilation = dense<1> : tensor<3xi64>, window_strides = dense<1> : tensor<3xi64> } : (tensor, tensor<2x2x2x?x?xf32>) -> tensor return %0 : tensor } // CHECK-LABEL: func @conv_3d_input_ndhwc_filter_dhwcf // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[C0:.+]] = constant 0 : index // CHECK: %[[DIM0:.+]] = memref.dim %[[ARG0]], %[[C0]] : tensor // CHECK: %[[C4:.+]] = constant 4 : index // CHECK: %[[DIM4:.+]] = memref.dim %[[ARG1]], %[[C4]] : tensor<2x2x2x?x?xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[DIM0]], 7, 7, 7, %[[DIM4]]] // CHECK: %[[ZERO:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[ZERO]]) // CHECK: linalg.conv_3d_input_ndhwc_filter_dhwcf // CHECK-SAME: {dilations = dense<1> : tensor<3xi64> // CHECK-SAME: strides = dense<1> : tensor<3xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor, tensor<2x2x2x?x?xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor) -> tensor // ----- func @conv2d_1452x2223_dilated_valid(%arg0: tensor<1x4x5x2xf32>, %arg1: tensor<2x2x2x3xf32>) -> tensor<1x2x4x3xf32> { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 1 : i64, padding = dense<0> : tensor<2x2xi64>, rhs_dilation = dense<[2, 1]> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64> } : (tensor<1x4x5x2xf32>, tensor<2x2x2x3xf32>) -> tensor<1x2x4x3xf32> return %0 : tensor<1x2x4x3xf32> } // CHECK-LABEL: func @conv2d_1452x2223_dilated_valid // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 2, 4, 3] : tensor<1x2x4x3xf32> // CHECK: %[[ZERO:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[ZERO]]) : tensor<1x2x4x3xf32>, f32 -> tensor<1x2x4x3xf32> // CHECK: linalg.conv_2d_input_nhwc_filter_hwcf // CHECK-SAME: {dilations = dense<[2, 1]> : tensor<2xi64> // CHECK-SAME: strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : tensor<1x4x5x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x2x4x3xf32>) -> tensor<1x2x4x3xf32> // ----- func @depthwise_conv(%arg0: tensor<2x4x5x2xf32>, %arg1: tensor<2x2x2x3xf32>) -> tensor<2x3x4x6xf32> { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 2 : i64, padding = dense<0> : tensor<2x2xi64>, rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<1> : tensor<2xi64>} : (tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) -> tensor<2x3x4x6xf32> return %0 : tensor<2x3x4x6xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d1)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d3, d4)> // CHECK: func @depthwise_conv // CHECK-SAME: %[[IN:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[FILTER:[a-zA-Z0-9_]*]] // CHECK: %[[INIT:.+]] = linalg.init_tensor [2, 3, 4, 2, 3] : tensor<2x3x4x2x3xf32> // CHECK: %[[CST:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[CST]]) : tensor<2x3x4x2x3xf32>, f32 -> tensor<2x3x4x2x3xf32> // CHECK: %[[OUT:.+]] = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf // CHECK-SAME: {strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%[[IN]], %[[FILTER]] : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32> // CHECK: %{{.+}} = linalg.tensor_reshape %[[OUT]] // CHECK-SAME: [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: : tensor<2x3x4x2x3xf32> into tensor<2x3x4x6xf32> // ----- func @depthwise_conv_multiplier_1(%arg0: tensor<1x113x113x96xf32>, %arg1: tensor<3x3x1x96xf32>) -> tensor<1x56x56x96xf32> { %0 = "mhlo.convolution"(%arg0, %arg1) { batch_group_count = 1 : i64, dimension_numbers = { input_batch_dimension = 0 : i64, input_feature_dimension = 3 : i64, input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>, kernel_input_feature_dimension = 2 : i64, kernel_output_feature_dimension = 3 : i64, kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>, output_batch_dimension = 0 : i64, output_feature_dimension = 3 : i64, output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64> }, feature_group_count = 96 : i64, padding = dense<0> : tensor<2x2xi64>, rhs_dilation = dense<1> : tensor<2xi64>, window_strides = dense<2> : tensor<2xi64>} : (tensor<1x113x113x96xf32>, tensor<3x3x1x96xf32>) -> tensor<1x56x56x96xf32> return %0 : tensor<1x56x56x96xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d1)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)> // CHECK: func @depthwise_conv_multiplier_1 // CHECK-SAME: %[[IN:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[FILTER:[a-zA-Z0-9_]*]] // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 56, 56, 96] : tensor<1x56x56x96xf32> // CHECK: %[[CST:.+]] = constant 0.000000e+00 : f32 // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[CST]]) : tensor<1x56x56x96xf32>, f32 -> tensor<1x56x56x96xf32> // CHECK: %[[RESHAPED_FILTER:.+]] = linalg.tensor_reshape %[[FILTER]] [#[[MAP0]], #[[MAP1]], #[[MAP2]]] : tensor<3x3x1x96xf32> into tensor<3x3x96xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_input_nhwc_filter_hwc // CHECK-SAME: {strides = dense<2> : tensor<2xi64>} // CHECK-SAME: ins(%[[IN]], %[[RESHAPED_FILTER]] : tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> // ----- func @reduce_window_min_nhwc(%arg0: tensor<1x18x18x64xf32>, %arg1: tensor) -> tensor<1x8x8x64xf32>{ %0 = "mhlo.reduce_window"(%arg0, %arg1) ( { ^bb0(%arg2: tensor, %arg3 : tensor): %1 = mhlo.minimum %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor) -> tensor<1x8x8x64xf32> return %0 : tensor<1x8x8x64xf32> } // CHECK-LABEL: func @reduce_window_min_nhwc // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[WINDOW:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32> // CHECK: %[[INIT_VAL:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES:.+]] = linalg.pooling_nhwc_min // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // ----- func @reduce_window_max_nhwc(%arg0: tensor<1x18x18x64xf32>, %arg1: tensor) -> tensor<1x8x8x64xf32>{ %0 = "mhlo.reduce_window"(%arg0, %arg1) ( { ^bb0(%arg2: tensor, %arg3 : tensor): %1 = mhlo.maximum %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor) -> tensor<1x8x8x64xf32> return %0 : tensor<1x8x8x64xf32> } // CHECK-LABEL: func @reduce_window_max_nhwc // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[WINDOW:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32> // CHECK: %[[INIT_VAL:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES:.+]] = linalg.pooling_nhwc_max // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // ----- func @reduce_window_sum_nhwc(%arg0: tensor<1x18x18x64xf32>, %arg1: tensor) -> tensor<1x8x8x64xf32>{ %0 = "mhlo.reduce_window"(%arg0, %arg1) ( { ^bb0(%arg2: tensor, %arg3 : tensor): %1 = mhlo.add %arg2, %arg3 : tensor "mhlo.return"(%1) : (tensor) -> () }) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor) -> tensor<1x8x8x64xf32> return %0 : tensor<1x8x8x64xf32> } // CHECK-LABEL: func @reduce_window_sum_nhwc // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[WINDOW:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32> // CHECK: %[[INIT_VAL:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES:.+]] = linalg.pooling_nhwc_sum // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // ----- func @reduce_window_max_nhwc_with_cst(%arg0: tensor<1x18x18x64xf32>) -> tensor<1x8x8x64xf32> { %0 = constant dense<0xFF800000> : tensor %1 = "mhlo.reduce_window"(%arg0, %0) ( { ^bb0(%arg1: tensor, %arg2 : tensor): %2 = mhlo.maximum %arg1, %arg2 : tensor "mhlo.return"(%2) : (tensor) -> () }) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor) -> tensor<1x8x8x64xf32> return %1 : tensor<1x8x8x64xf32> } // CHECK-LABEL: func @reduce_window_max_nhwc // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-DAG: %[[CST:.+]] = constant dense<0xFF800000> : tensor // CHECK: %[[WINDOW:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32 // CHECK: %[[INIT_VAL:.+]] = tensor.extract %[[CST]][] : tensor // CHECK: %[[FILL:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES:.+]] = linalg.pooling_nhwc_max // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // ----- func @reduce_window_sum_max_nhwc(%arg0: tensor<1x18x18x64xf32>, %arg1: tensor) -> (tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32>) { %0:2 = "mhlo.reduce_window"(%arg0, %arg0, %arg1, %arg1) ( { ^bb0(%arg2: tensor, %arg3 : tensor, %arg4: tensor, %arg5 : tensor): %1 = mhlo.add %arg2, %arg4 : tensor %2 = mhlo.maximum %arg3, %arg5 : tensor "mhlo.return"(%1, %2) : (tensor, tensor) -> () }) {window_dimensions = dense<[1, 3, 3, 1]> : tensor<4xi64>, window_strides = dense<[1, 2, 2, 1]> : tensor<4xi64>} : (tensor<1x18x18x64xf32>, tensor<1x18x18x64xf32>, tensor, tensor) -> (tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32>) return %0#0, %0#1 : tensor<1x8x8x64xf32>, tensor<1x8x8x64xf32> } // CHECK-LABEL: func @reduce_window_sum_max_nhwc // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]*]] // CHECK: %[[WINDOW0:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT0:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32> // CHECK: %[[INIT_VAL0:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[FILL0:.+]] = linalg.fill(%[[INIT]], %[[INIT_VAL]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES0:.+]] = linalg.pooling_nhwc_sum // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW0]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL0]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // CHECK: %[[WINDOW1:.+]] = linalg.init_tensor [3, 3] : tensor<3x3xf32> // CHECK: %[[INIT1:.+]] = linalg.init_tensor [1, 8, 8, 64] : tensor<1x8x8x64xf32> // CHECK: %[[INIT_VAL1:.+]] = tensor.extract %[[ARG1]][] : tensor // CHECK: %[[FILL1:.+]] = linalg.fill(%[[INIT1]], %[[INIT_VAL1]]) : tensor<1x8x8x64xf32>, f32 -> tensor<1x8x8x64xf32> // CHECK: %[[RES1:.+]] = linalg.pooling_nhwc_max // CHECK-SAME: {dilations = dense<1> : vector<2xi64> // CHECK-SAME: strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%[[ARG0]], %[[WINDOW1]] : tensor<1x18x18x64xf32>, tensor<3x3xf32>) // CHECK-SAME: outs(%[[FILL1]] : tensor<1x8x8x64xf32>) -> tensor<1x8x8x64xf32> // CHECK: return %[[RES0]], %[[RES1]] // ----- func @torch_select_index(%arg0: tensor<5x1x5xi32>, %arg1: tensor<2xi32>) -> tensor<2x1x5xi32> { %0 = "mhlo.torch_index_select"(%arg0, %arg1) { dim = 0 : i64, batch_dims = 0 : i64 } : (tensor<5x1x5xi32>, tensor<2xi32>) -> tensor<2x1x5xi32> return %0 : tensor<2x1x5xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK: func @torch_select_index // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[INDEX:[a-zA-Z0-9_]*]] // CHECK: linalg.indexed_generic { // CHECK-SAME: indexing_maps // CHECK-SAME: #[[MAP0]], #[[MAP1]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[INDEX]] : tensor<2xi32>) // CHECK: ^{{.+}}( // CHECK-SAME: %[[I:.+]]: index, %[[J:.+]]: index, %[[K:.+]]: index // CHECK-SAME: %[[VAL:.+]]: i32, %{{.+}}: i32): // CHECK: %[[CAST:.+]] = index_cast %[[VAL]] : i32 to index // CHECK: %[[VAL2:.+]] = tensor.extract %[[INPUT]][%[[CAST]], %[[J]], %[[K]]] : tensor<5x1x5xi32> // CHECK: linalg.yield %[[VAL2]] : i32 // ----- func @torch_select_index_scalar(%arg0: tensor<4x8xf32>, %arg1: tensor) -> tensor<8xf32> { %0 = "mhlo.torch_index_select"(%arg0, %arg1) { batch_dims = 0 : i64, dim = 0 : i64 } : (tensor<4x8xf32>, tensor) -> tensor<8xf32> return %0 : tensor<8xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0) -> ()> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0)> // CHECK: func @torch_select_index_scalar // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[INDEX:[a-zA-Z0-9_]*]] // CHECK: %[[T0:.+]] = linalg.init_tensor [8] : tensor<8xf32> // CHECK: linalg.indexed_generic { // CHECK-SAME: indexing_maps // CHECK-SAME: #[[MAP0]], #[[MAP1]] // CHECK-SAME: iterator_types = ["parallel"] // CHECK-SAME: ins(%[[INDEX]] : tensor) outs(%[[T0]] : tensor<8xf32>) // CHECK: ^{{.+}}( // CHECK-SAME: %[[I:[a-zA-Z0-9_]+]]: index, %[[VAL:[a-zA-Z0-9_]+]]: i32, %{{.+}}: f32): // CHECK: %[[CAST:.+]] = index_cast %[[VAL]] : i32 to index // CHECK: %[[VAL2:.+]] = tensor.extract %[[INPUT]][%[[CAST]], %[[I]]] : tensor<4x8xf32> // CHECK: linalg.yield %[[VAL2]] : f32 // ----- func @torch_select_index_batch(%arg0: tensor<4x7x8x2xf32>, %arg1: tensor<4x1xi32>) -> tensor<4x7x1x2xf32> { %0 = "mhlo.torch_index_select"(%arg0, %arg1) { dim = 2 : i64, batch_dims = 1 : i64 } : (tensor<4x7x8x2xf32>, tensor<4x1xi32>) -> tensor<4x7x1x2xf32> return %0 : tensor<4x7x1x2xf32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func @torch_select_index_batch // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[INDEX:[a-zA-Z0-9_]*]] // CHECK: linalg.indexed_generic { // CHECK-SAME: indexing_maps // CHECK-SAME: #[[MAP0]], #[[MAP1]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[INDEX]] : tensor<4x1xi32>) // CHECK-NEXT: ^{{.+}}( // CHECK-SAME: %[[I:[a-zA-Z0-9_]+]]: index, %[[J:[a-zA-Z0-9_]+]]: index, // CHECK-SAME: %[[K:[a-zA-Z0-9_]+]]: index, %[[L:.+]]: index, // CHECK-SAME: %[[VAL:.+]]: i32, %{{.+}}: f32): // CHECK: %[[CAST:.+]] = index_cast %[[VAL]] : i32 to index // CHECK: %[[VAL2:.+]] = tensor.extract %[[INPUT]][%[[I]], %[[J]], %[[CAST]], %[[L]]] : tensor<4x7x8x2xf32> // CHECK: linalg.yield %[[VAL2]] : f32 // ----- func @torch_index_select_dynamic(%input: tensor, %index: tensor) -> tensor{ %0 = "mhlo.torch_index_select"(%input, %index) { batch_dims = 1 : i64, dim = 2 : i64 } : (tensor, tensor) -> tensor return %0 : tensor } // CHECK: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2)> // CHECK: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func @torch_index_select_dynamic // CHECK-SAME: %[[INPUT:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[INDEX:[a-zA-Z0-9_]*]] // CHECK: %[[C0:.+]] = constant 0 : index // CHECK: %[[D0:.+]] = memref.dim %[[INPUT]], %[[C0]] // CHECK: %[[C1:.+]] = constant 1 : index // CHECK: %[[D1:.+]] = memref.dim %[[INPUT]], %[[C1]] // CHECK: %[[C1:.+]] = constant 1 : index // CHECK: %[[D2:.+]] = memref.dim %[[INDEX]], %[[C1]] // CHECK: %[[C3:.+]] = constant 3 : index // CHECK: %[[D3:.+]] = memref.dim %[[INPUT]], %[[C3]] // CHECK: %[[INIT:.+]] = linalg.init_tensor [%[[D0]], %[[D1]], %[[D2]], %[[D3]]] // CHECK: %[[RESULT:.+]] = linalg.indexed_generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[INDEX]] : tensor) // CHECK-SAME: outs(%[[INIT]] : tensor) // CHECK: ^{{.+}}( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: index, // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: index, // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: index // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: index, // CHECK-SAME: %[[ARG4:[a-zA-Z0-9_]+]]: i32, %{{[a-zA-Z0-9_]+}}: f32) // CHECK: %[[POS:.+]] = index_cast %[[ARG4]] // CHECK: %[[YIELD:.+]] = tensor.extract %[[INPUT]][%[[ARG0]], %[[ARG1]], %[[POS]], %[[ARG3]]] // CHECK: linalg.yield %[[YIELD]] // ----- // CHECK-LABEL: func @concatenate( // CHECK-SAME: %[[VAL_0:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[VAL_1:[a-zA-Z0-9_]*]] // CHECK-SAME: %[[VAL_2:[a-zA-Z0-9_]*]] // CHECK: %[[VAL_3:.*]] = constant 0 : index // CHECK: %[[VAL_4:.*]] = constant 0 : index // CHECK: %[[VAL_5:.*]] = memref.dim %[[VAL_0]], %[[VAL_4]] : tensor // CHECK: %[[VAL_6:.*]] = constant 1 : index // CHECK: %[[VAL_7:.*]] = memref.dim %[[VAL_0]], %[[VAL_6]] : tensor // CHECK: %[[VAL_8:.*]] = constant 1 : index // CHECK: %[[VAL_9:.*]] = memref.dim %[[VAL_1]], %[[VAL_8]] : tensor // CHECK: %[[VAL_10:.*]] = addi %[[VAL_7]], %[[VAL_9]] : index // CHECK: %[[VAL_11:.*]] = constant 1 : index // CHECK: %[[VAL_12:.*]] = memref.dim %[[VAL_2]], %[[VAL_11]] : tensor // CHECK: %[[VAL_13:.*]] = addi %[[VAL_10]], %[[VAL_12]] : index // CHECK: %[[VAL_14:.*]] = linalg.init_tensor [%[[VAL_5]], %[[VAL_13]]] : tensor // CHECK: %[[VAL_15:.*]] = linalg.indexed_generic {indexing_maps = [#map], iterator_types = ["parallel", "parallel"]} outs(%[[VAL_14]] : tensor) { // CHECK: ^bb0(%[[VAL_16:.*]]: index, %[[VAL_17:.*]]: index, %[[VAL_18:.*]]: i32): // CHECK: %[[VAL_19:.*]] = constant 1 : index // CHECK: %[[VAL_20:.*]] = memref.dim %[[VAL_0]], %[[VAL_19]] : tensor // CHECK: %[[VAL_21:.*]] = addi %[[VAL_3]], %[[VAL_20]] : index // CHECK: %[[VAL_22:.*]] = cmpi ult, %[[VAL_17]], %[[VAL_21]] : index // CHECK: %[[VAL_23:.*]] = scf.if %[[VAL_22]] -> (i32) { // CHECK: %[[VAL_24:.*]] = subi %[[VAL_17]], %[[VAL_3]] : index // CHECK: %[[VAL_25:.*]] = tensor.extract %[[VAL_0]][%[[VAL_16]], %[[VAL_24]]] : tensor // CHECK: scf.yield %[[VAL_25]] : i32 // CHECK: } else { // CHECK: %[[VAL_26:.*]] = constant 1 : index // CHECK: %[[VAL_27:.*]] = memref.dim %[[VAL_1]], %[[VAL_26]] : tensor // CHECK: %[[VAL_28:.*]] = addi %[[VAL_21]], %[[VAL_27]] : index // CHECK: %[[VAL_29:.*]] = cmpi ult, %[[VAL_17]], %[[VAL_28]] : index // CHECK: %[[VAL_30:.*]] = scf.if %[[VAL_29]] -> (i32) { // CHECK: %[[VAL_31:.*]] = subi %[[VAL_17]], %[[VAL_21]] : index // CHECK: %[[VAL_32:.*]] = tensor.extract %[[VAL_1]][%[[VAL_16]], %[[VAL_31]]] : tensor // CHECK: scf.yield %[[VAL_32]] : i32 // CHECK: } else { // CHECK: %[[VAL_33:.*]] = subi %[[VAL_17]], %[[VAL_28]] : index // CHECK: %[[VAL_34:.*]] = tensor.extract %[[VAL_2]][%[[VAL_16]], %[[VAL_33]]] : tensor // CHECK: scf.yield %[[VAL_34]] : i32 // CHECK: } // CHECK: scf.yield %[[VAL_35:.*]] : i32 // CHECK: } // CHECK: linalg.yield %[[VAL_36:.*]] : i32 // CHECK: } -> tensor // CHECK: return %[[VAL_37:.*]] : tensor // CHECK: } func @concatenate(%a: tensor, %b: tensor, %c: tensor) -> tensor { %concat = "mhlo.concatenate"(%a, %b, %c) { dimension = 1 } : (tensor, tensor, tensor) -> tensor return %concat : tensor }