// RUN: mlir-hlo-opt %s --split-input-file --mhlo-rank-specialization-cluster | FileCheck %s // RUN: mlir-hlo-opt %s --split-input-file --mhlo-rank-specialization-cluster --mhlo-rank-specialization-to-scf | FileCheck %s --check-prefix CHECK-SCF // CHECK-LABEL: @add_mul // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<*xf32>) func @add_mul(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG2]], %[[ARG0]], %[[ARG1]]) ( { // CHECK: ^bb0(%[[ARG2_:.*]]: tensor<*xf32>, %[[ARG0_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>): // CHECK: %[[TMP:.*]] = chlo.broadcast_multiply %[[ARG0_]], %[[ARG1_]] // CHECK: %[[INNER_RES:.*]] = chlo.broadcast_add %[[TMP]], %[[ARG2_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[INNER_RES]]) // CHECK: }) : (tensor<*xf32>, tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> // CHECK: return %[[RES]] %0 = chlo.broadcast_multiply %arg0, %arg1 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %1 = chlo.broadcast_add %0, %arg2 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> return %1 : tensor<*xf32> } // ----- // Unary MHLO operation. // CHECK-LABEL: @sqrt // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) func @sqrt(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>): // CHECK: %[[TMP0:.*]] = "mhlo.sqrt"(%[[ARG_]]) // CHECK: %[[TMP1:.*]] = "mhlo.sqrt"(%[[TMP0]]) // CHECK: %[[TMP2:.*]] = "mhlo.sqrt"(%[[TMP1]]) // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP2]]) // CHECK: return %[[RES]] %0 = "mhlo.sqrt"(%arg) : (tensor<*xf32>) -> tensor<*xf32> %1 = "mhlo.sqrt"(%0) : (tensor<*xf32>) -> tensor<*xf32> %2 = "mhlo.sqrt"(%1) : (tensor<*xf32>) -> tensor<*xf32> return %2 : tensor<*xf32> } // CHECK-SCF-LABEL: @sqrt // CHECK-SCF-SAME: (%[[ARG:.*]]: tensor<*xf32>) // CHECK-SCF: %[[SHAPE:.*]] = shape.shape_of %[[ARG]] // CHECK-SCF: %[[N:.*]] = shape.num_elements %[[SHAPE]] // CHECK-SCF: %[[FLAT_SHAPE:.*]] = tensor.from_elements %[[N]] // CHECK-SCF: %[[FLAT_ARG:.*]] = "mhlo.dynamic_reshape"(%[[ARG]], %[[FLAT_SHAPE]]) : (tensor<*xf32>, tensor<1xindex>) -> tensor // CHECK-SCF: %[[TMP0:.*]] = "mhlo.sqrt"(%[[FLAT_ARG]]) : (tensor) // CHECK-SCF: %[[TMP1:.*]] = "mhlo.sqrt"(%[[TMP0]]) : (tensor) // CHECK-SCF: %[[TMP2:.*]] = "mhlo.sqrt"(%[[TMP1]]) : (tensor) // CHECK-SCF: %[[RES:.*]] = "mhlo.dynamic_reshape"(%[[TMP2]], %[[SHAPE]]) : (tensor, tensor) -> tensor<*xf32> // CHECK-SCF: return %[[RES]] // ----- // Don't cluster single ranked operation. // CHECK-LABEL: @sqrt_ranked // CHECK-SAME: (%[[ARG:.*]]: tensor<3x?xf32>) func @sqrt_ranked(%arg: tensor<3x?xf32>) -> tensor<3x?xf32> { // CHECK-NOT: rank_specialization_cluster %0 = "mhlo.sqrt"(%arg) : (tensor<3x?xf32>) -> tensor<3x?xf32> %1 = "mhlo.sqrt"(%0) : (tensor<3x?xf32>) -> tensor<3x?xf32> %2 = "mhlo.sqrt"(%1) : (tensor<3x?xf32>) -> tensor<3x?xf32> return %2 : tensor<3x?xf32> } // ----- // Ternary operation. // CHECK-LABEL: @select_mixed // CHECK-SAME: (%[[PRED:.*]]: tensor<*xi1>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<2xf32>) func @select_mixed(%pred: tensor<*xi1>, %arg1: tensor<*xf32>, %arg2: tensor<2xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[PRED]], %[[ARG1]], %[[ARG2]]) // CHECK: ^bb0(%[[PRED_:.*]]: tensor<*xi1>, %[[ARG1_:.*]]: tensor<*xf32>, %[[ARG2_:.*]]: tensor<2xf32>) // CHECK: %[[TMP:.*]] = chlo.broadcast_select %[[PRED_]], %[[ARG1_]], %[[ARG2_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = "chlo.broadcast_select"(%pred, %arg1, %arg2) : (tensor<*xi1>, tensor<*xf32>, tensor<2xf32>) -> tensor<*xf32> return %0 : tensor<*xf32> } // ----- // Unary CHLO operation. // CHECK-LABEL: @tan // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) -> tensor<*xf32> func @tan(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) ( { // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>) // CHECK: %[[TMP0:.*]] = chlo.tan %[[ARG_]] // CHECK: %[[TMP1:.*]] = chlo.tan %[[TMP0]] // CHECK: %[[TMP2:.*]] = chlo.tan %[[TMP1]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP2]]) // CHECK: return %[[RES]] %0 = chlo.tan %arg : tensor<*xf32> -> tensor<*xf32> %1 = chlo.tan %0 : tensor<*xf32> -> tensor<*xf32> %2 = chlo.tan %1 : tensor<*xf32> -> tensor<*xf32> return %2 : tensor<*xf32> } // ----- // Composition of unary/binary CHLO and unary MHLO ops. // CHECK-LABEL: @mixed // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>, %[[ARG2:.*]]: tensor<*xf32>) func @mixed(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>, %arg2 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG2]], %[[ARG1]], %[[ARG0]]) // CHECK: ^bb0(%[[ARG2_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>, %[[ARG0_:.*]]: tensor<*xf32>) // CHECK: %[[TMP0:.*]] = chlo.tan %[[ARG0_]] // CHECK: %[[TMP1:.*]] = "mhlo.sqrt"(%[[ARG1_]]) // CHECK: %[[TMP2:.*]] = chlo.broadcast_multiply %[[TMP0]], %[[TMP1]] // CHECK: %[[TMP3:.*]] = chlo.broadcast_add %[[TMP2]], %[[ARG2_]] // CHECK: %[[TMP4:.*]] = "mhlo.sqrt"(%[[TMP3]]) // CHECK: %[[TMP5:.*]] = chlo.tan %[[TMP4]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP5]]) // CHECK: return %[[RES]] %0 = chlo.tan %arg0 : tensor<*xf32> -> tensor<*xf32> %1 = "mhlo.sqrt"(%arg1) : (tensor<*xf32>) -> tensor<*xf32> %2 = chlo.broadcast_multiply %0, %1 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %3 = chlo.broadcast_add %2, %arg2 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %4 = "mhlo.sqrt"(%3) : (tensor<*xf32>) -> tensor<*xf32> %5 = chlo.tan %4 : tensor<*xf32> -> tensor<*xf32> return %5 : tensor<*xf32> } // ----- // Constant cluster operand. // CHECK-LABEL: @relu // CHECK-SAME: (%[[ARG:.*]]: tensor<*xf32>) func @relu(%arg : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[C0:.*]] = mhlo.constant dense<0.000000e+00> // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]], %[[C0]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xf32>, %[[C0_:.*]]: tensor): // CHECK: %[[TMP:.*]] = chlo.broadcast_maximum %[[ARG_]], %[[C0_]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = mhlo.constant dense<0.000000e+00> : tensor %1 = chlo.broadcast_maximum %0, %arg : (tensor, tensor<*xf32>) -> tensor<*xf32> return %1 : tensor<*xf32> } // ----- // Cluster with binary non-broadcasting operation. // CHECK-LABEL: @angle // CHECK-SAME: (%[[ARG:.*]]: tensor<*xcomplex>) func @angle(%arg : tensor<*xcomplex>) -> tensor<*xf32> { // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[ARG]]) // CHECK: ^bb0(%[[ARG_:.*]]: tensor<*xcomplex>): // CHECK: %[[IMAG:.*]] = "mhlo.imag"(%[[ARG_]]) // CHECK: %[[REAL:.*]] = "mhlo.real"(%[[ARG_]]) // CHECK: %[[TMP:.*]] = mhlo.atan2 %[[IMAG]], %[[REAL]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP]]) // CHECK: return %[[RES]] %0 = "mhlo.imag"(%arg) : (tensor<*xcomplex>) -> tensor<*xf32> %1 = "mhlo.real"(%arg) : (tensor<*xcomplex>) -> tensor<*xf32> %2 = mhlo.atan2 %0, %1 : tensor<*xf32> return %2 : tensor<*xf32> } // ----- // CHECK-LABEL: @xlogy // CHECK-SAME: (%[[ARG0:.*]]: tensor<*xf32>, %[[ARG1:.*]]: tensor<*xf32>) func @xlogy(%arg0 : tensor<*xf32>, %arg1 : tensor<*xf32>) -> tensor<*xf32> { // CHECK: %[[C0:.*]] = mhlo.constant dense<0.000000e+00> // CHECK: %[[RES:.*]] = "chlo.rank_specialization_cluster"(%[[C0]], %[[ARG0]], %[[ARG1]]) // CHECK: ^bb0(%[[C0_:.*]]: tensor, %[[ARG0_:.*]]: tensor<*xf32>, %[[ARG1_:.*]]: tensor<*xf32>): // CHECK: %[[TMP0:.*]] = chlo.broadcast_compare %[[ARG0_]], %[[C0_]] {comparison_direction = "EQ"} // CHECK: %[[TMP1:.*]] = "mhlo.log"(%[[ARG1_]]) // CHECK: %[[TMP2:.*]] = chlo.broadcast_multiply %[[ARG0_]], %[[TMP1]] // CHECK: %[[TMP3:.*]] = chlo.broadcast_select %[[TMP0]], %[[C0_]], %[[TMP2]] // CHECK: "chlo.rank_specialization_cluster_yield"(%[[TMP3]]) // CHECK: return %[[RES]] %0 = mhlo.constant dense<0.000000e+00> : tensor %1 = tensor.cast %0 : tensor to tensor %2 = chlo.broadcast_compare %arg0, %1 {comparison_direction = "EQ"} : (tensor<*xf32>, tensor) -> tensor<*xi1> %3 = "mhlo.log"(%arg1) : (tensor<*xf32>) -> tensor<*xf32> %4 = chlo.broadcast_multiply %arg0, %3 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> %5 = chlo.broadcast_select %2, %1, %4 : (tensor<*xi1>, tensor, tensor<*xf32>) -> tensor<*xf32> return %5 : tensor<*xf32> }