/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // This file implements logic for lowering XLA general dot to a regular dot. #include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/STLExtras.h" #include "third_party/llvm/llvm-project/llvm/include/llvm/ADT/StringSwitch.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/Dialect/StandardOps/IR/Ops.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Attributes.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Function.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Location.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/Operation.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/PatternMatch.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/StandardTypes.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/IR/TypeUtilities.h" #include "third_party/llvm/llvm-project/mlir/include/mlir/Pass/Pass.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/passes.h" #include "third_party/tensorflow/compiler/mlir/hlo/include/mlir-hlo/Dialect/mhlo/transforms/rewriters.h" using mlir::DenseIntElementsAttr; using mlir::ElementsAttr; using mlir::failure; using mlir::FunctionPass; using mlir::LogicalResult; using mlir::MLIRContext; using mlir::OpRewritePattern; using mlir::OwningRewritePatternList; using mlir::PassRegistration; using mlir::PassWrapper; using mlir::PatternRewriter; using mlir::RankedTensorType; using mlir::success; using mlir::Value; namespace { Value TransposeReshape(Value arg, mlir::Location loc, llvm::ArrayRef left_dims, llvm::ArrayRef right_dims, llvm::ArrayRef arg_shape, PatternRewriter *rewriter) { auto element_type = mlir::getElementTypeOrSelf(arg.getType()); int64_t left_size = 1; for (auto dim : left_dims) { left_size *= arg_shape[dim]; } int64_t right_size = 1; for (auto dim : right_dims) { right_size *= arg_shape[dim]; } // Generate the transpose permutation attribute. llvm::SmallVector transpose_permutation(left_dims.begin(), left_dims.end()); transpose_permutation.append(right_dims.begin(), right_dims.end()); mlir::TensorType transpose_permutation_type = RankedTensorType::get( {static_cast(transpose_permutation.size())}, rewriter->getIntegerType(64)); auto transpose_permutation_attr = DenseIntElementsAttr::get(transpose_permutation_type, llvm::makeArrayRef(transpose_permutation)) .cast(); // Compute the resulting shape. llvm::SmallVector transposed_shape; for (auto val : transpose_permutation) { transposed_shape.push_back(arg_shape[val]); } auto transpose_type = RankedTensorType::get(transposed_shape, element_type); auto transpose_result = rewriter->create( loc, transpose_type, arg, transpose_permutation_attr); // Return the final result. auto reshaped_type = RankedTensorType::get({left_size, right_size}, element_type); return rewriter->create(loc, reshaped_type, transpose_result); } Value ProcessDotArg(Value arg, mlir::Location loc, ElementsAttr contract_dims_attr, bool outer_dims_first, PatternRewriter *rewriter) { auto shape = arg.getType().cast().getShape(); llvm::SmallVector is_outer_dim; is_outer_dim.resize(shape.size(), true); // Compute the contract dimension ordering. llvm::SmallVector contract_dims; for (auto dim : contract_dims_attr.getValues()) { contract_dims.push_back(dim); is_outer_dim[dim] = false; } // Compute the outer dimension orderings. llvm::SmallVector outer_dims; for (auto it : llvm::enumerate(is_outer_dim)) { if (it.value()) { outer_dims.push_back(it.index()); } } if (outer_dims_first) { return TransposeReshape(arg, loc, outer_dims, contract_dims, shape, rewriter); } return TransposeReshape(arg, loc, contract_dims, outer_dims, shape, rewriter); } struct GeneralDotConvert : public OpRewritePattern { // Attempts to lower a General Dot operator to a standard Dot operator. // General dots include batching dimensions and can have collapsing // dimensions along any axis. Inserting correctly arrange transpose and // reshape operators organizes the tensors and allows the General Dot to be // replaced with the standard Dot operator. // // Note: This requires an empty list of batch dimensions. explicit GeneralDotConvert(MLIRContext *context) : OpRewritePattern(context) {} LogicalResult matchAndRewrite(mlir::xla_hlo::DotGeneralOp op, PatternRewriter &rewriter) const override { auto dot_element_type = mlir::getElementTypeOrSelf(op); auto dot_numbers = op.dot_dimension_numbers(); if (dot_numbers.lhs_batching_dimensions().getNumElements() != 0 || dot_numbers.rhs_batching_dimensions().getNumElements() != 0) { return failure(); } auto lhs = ProcessDotArg(op.lhs(), op.getLoc(), dot_numbers.lhs_contracting_dimensions(), /*outer_dims_first=*/true, &rewriter); auto rhs = ProcessDotArg(op.rhs(), op.getLoc(), dot_numbers.rhs_contracting_dimensions(), /*outer_dims_first=*/false, &rewriter); // Dot resulting shape. auto lhs_shape = lhs.getType().cast().getShape(); auto rhs_shape = rhs.getType().cast().getShape(); auto new_dot_type = RankedTensorType::get({lhs_shape[0], rhs_shape[1]}, dot_element_type); auto new_dot_op = rewriter.create( op.getLoc(), new_dot_type, lhs, rhs, *(op.precision_config())); rewriter.replaceOpWithNewOp(op, op.getType(), new_dot_op); return success(); } }; struct LegalizeGeneralDot : public PassWrapper { /// Lower all general dots that can be represented as a non-batched matmul. void runOnFunction() override { OwningRewritePatternList patterns; mlir::xla_hlo::PopulateGeneralDotOpLoweringPatterns(&patterns, &getContext()); applyPatternsAndFoldGreedily(getFunction(), patterns); } }; } // namespace void mlir::xla_hlo::PopulateGeneralDotOpLoweringPatterns( OwningRewritePatternList *patterns, MLIRContext *ctx) { patterns->insert(ctx); } static PassRegistration legalize_pass( "test-xla-lower-general-dot", "Tests lowering general dot to a non-batched dot when possible");