mlir-hlo/include/mlir-hlo/utils/broadcast_utils.h

52 lines
2.2 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_BROADCAST_UTILS_H_
#define TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_BROADCAST_UTILS_H_
// Utilities relating to implementing HLO broadcasting.
// Note: This file should not depend on any non-MLIR TensorFlow libraries.
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Location.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Support/LLVM.h"
namespace mlir {
namespace hlo {
// Checks whether the given operand types and broadcast_dims attr represent a
// legal combination for "numpy" style broadcasting (where 1-dims are prepended
// to the smaller ranked operand until it is of the same rank as the larger).
// See: https://docs.scipy.org/doc/numpy/reference/ufuncs.html
bool IsLegalNumpyRankedBroadcast(Value lhs, Value rhs,
DenseIntElementsAttr broadcast_dims);
// Emits shape dialect ops to compute the result shape for a broadcasting
// binary elementwise op which broadcasts according to "numpy" semantics
// (see above), returning a `shape.shape` or an extent tensor of the resulting
// shape. The result should only be an extent tensor in contexts that ensure
// both operands to be broadcastable.
Value ComputeBinaryElementwiseBroadcastingResultExtents(
Location loc, Value lhs, Value rhs, OpBuilder& builder,
bool unsafe_as_extent_tensor);
} // namespace hlo
} // namespace mlir
#endif // TENSORFLOW_COMPILER_MLIR_HLO_INCLUDE_MLIR_HLO_UTILS_BROADCAST_UTILS_H_