mlir-hlo/tests/end2end/broadcast.mlir

214 lines
7.6 KiB
MLIR

// RUN: mlir-hlo-opt %s -chlo-legalize-to-hlo -hlo-legalize-to-lhlo=results-escape-function=true -buffer-hoisting -buffer-deallocation -copy-removal -canonicalize -cse -lhlo-legalize-to-linalg -lhlo-fuse-linalg -convert-linalg-to-loops -canonicalize -cse -convert-linalg-to-llvm -test-lhlo-legalize-to-llvm | mlir-cpu-runner -e main -entry-point-result=void -shared-libs=%mlir_runner_utils_dir/libmlir_runner_utils%shlibext | FileCheck %s
func @main() -> () {
call @trivial_broadcast_wrapper() : () -> ()
call @broadcast_in_X_dim_wrapper() : () -> ()
call @broadcast_in_Y_dim_wrapper() : () -> ()
call @broadcast_in_X_dim_transpose_wrapper() : () -> ()
call @broadcast_in_Y_dim_transpose_wrapper() : () -> ()
call @broadcast_scalar_1d_wrapper() : () -> ()
call @broadcast_scalar_2d_wrapper() : () -> ()
return
}
func @print_memref_i8(memref<*xi8>) attributes { llvm.emit_c_interface }
func @print_memref_f32(memref<*xf32>) attributes { llvm.emit_c_interface }
func @trivial_broadcast_wrapper() {
%input = alloc() : memref<3xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0] : memref<3xf32>
%c2f32 = constant 2.0 : f32
%c1 = constant 1 : index
store %c2f32, %input[%c1] : memref<3xf32>
%c3f32 = constant 3.0 : f32
%c2 = constant 2 : index
store %c3f32, %input[%c2] : memref<3xf32>
%input_tensor = tensor_load %input : memref<3xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<0> : tensor<1xi64>
} : (tensor<3xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [2, 2, 2, 2]
// CHECK: [3, 3, 3, 3]
func @broadcast_in_X_dim_wrapper() {
%input = alloc() : memref<1x4xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0, %c0] : memref<1x4xf32>
%c2f32 = constant 2.0 : f32
%c1 = constant 1 : index
store %c2f32, %input[%c0, %c1] : memref<1x4xf32>
%c3f32 = constant 3.0 : f32
%c2 = constant 2 : index
store %c3f32, %input[%c0, %c2] : memref<1x4xf32>
%c4f32 = constant 4.0 : f32
%c3 = constant 3 : index
store %c4f32, %input[%c0, %c3] : memref<1x4xf32>
%input_tensor = tensor_load %input : memref<1x4xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<1x4xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 2, 3, 4]
// CHECK: [1, 2, 3, 4]
// CHECK: [1, 2, 3, 4]
func @broadcast_in_Y_dim_wrapper() {
%input = alloc() : memref<3x1xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0, %c0] : memref<3x1xf32>
%c2f32 = constant 2.0 : f32
%c1 = constant 1 : index
store %c2f32, %input[%c1, %c0] : memref<3x1xf32>
%c3f32 = constant 3.0 : f32
%c2 = constant 2 : index
store %c3f32, %input[%c2, %c0] : memref<3x1xf32>
%input_tensor = tensor_load %input : memref<3x1xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<3x1xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [2, 2, 2, 2]
// CHECK: [3, 3, 3, 3]
func @broadcast_in_X_dim_transpose_wrapper() {
%input = alloc() : memref<4x1xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0, %c0] : memref<4x1xf32>
%c2f32 = constant 2.0 : f32
%c1 = constant 1 : index
store %c2f32, %input[%c1, %c0] : memref<4x1xf32>
%c3f32 = constant 3.0 : f32
%c2 = constant 2 : index
store %c3f32, %input[%c2, %c0] : memref<4x1xf32>
%c4f32 = constant 4.0 : f32
%c3 = constant 3 : index
store %c4f32, %input[%c3, %c0] : memref<4x1xf32>
%input_tensor = tensor_load %input : memref<4x1xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>
} : (tensor<4x1xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 2, 3, 4]
// CHECK: [1, 2, 3, 4]
// CHECK: [1, 2, 3, 4]
func @broadcast_in_Y_dim_transpose_wrapper() {
%input = alloc() : memref<1x3xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0, %c0] : memref<1x3xf32>
%c2f32 = constant 2.0 : f32
%c1 = constant 1 : index
store %c2f32, %input[%c0, %c1] : memref<1x3xf32>
%c3f32 = constant 3.0 : f32
%c2 = constant 2 : index
store %c3f32, %input[%c0, %c2] : memref<1x3xf32>
%input_tensor = tensor_load %input : memref<1x3xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<[1, 0]> : tensor<2xi64>
} : (tensor<1x3xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [2, 2, 2, 2]
// CHECK: [3, 3, 3, 3]
func @broadcast_scalar_1d_wrapper() {
%input = alloc() : memref<1xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0] : memref<1xf32>
%input_tensor = tensor_load %input : memref<1xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<0> : tensor<1xi64>
} : (tensor<1xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [1, 1, 1, 1]
func @broadcast_scalar_2d_wrapper() {
%input = alloc() : memref<1x1xf32>
%c1f32 = constant 1.0 : f32
%c0 = constant 0 : index
store %c1f32, %input[%c0, %c0] : memref<1x1xf32>
%input_tensor = tensor_load %input : memref<1x1xf32>
%output_tensor = "mhlo.broadcast_in_dim"(%input_tensor) {
broadcast_dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<1x1xf32>) -> tensor<3x4xf32>
%output = alloc() : memref<3x4xf32>
tensor_store %output_tensor, %output : memref<3x4xf32>
%cast_for_print = memref_cast %output : memref<3x4xf32> to memref<*xf32>
call @print_memref_f32(%cast_for_print) : (memref<*xf32>) -> ()
return
}
// CHECK: rank = 2 offset = 0 sizes = [3, 4] strides = [4, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [1, 1, 1, 1]
// CHECK: [1, 1, 1, 1]