mlir-hlo/tests/lhlo_ops.mlir

1344 lines
46 KiB
MLIR

// RUN: mlir-hlo-opt %s -verify-diagnostics -split-input-file | mlir-hlo-opt | FileCheck %s
// -----
func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf32>) {
// expected-error@+1 {{requires operand #1 (type: 'memref<3xf32>') and result #1 (type: 'memref<2xf32>') to have same type}}
"lmhlo.all_reduce"(%input0, %input1, %input0, %input0) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%add = mhlo.add %arg0, %arg1 : tensor<f32>
"mhlo.return"(%add) : (tensor<f32>) -> ()
})
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 4]]> : tensor<2x4xi64>,
use_global_device_ids = false} : (memref<2xf32>, memref<3xf32>, memref<2xf32>, memref<2xf32>) -> ()
return
}
// -----
func @invalid_allreduce(%input0: memref<2xf32>, %input1: memref<3xf16>) {
// expected-error@+1 {{requires the same element type for all operands}}
"lmhlo.all_reduce"(%input0, %input1, %input0, %input1) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%add = mhlo.add %arg0, %arg1 : tensor<f32>
"mhlo.return"(%add) : (tensor<f32>) -> ()
})
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>,
use_global_device_ids = false} : (memref<2xf32>, memref<3xf16>, memref<2xf32>, memref<3xf16>) -> ()
return
}
// -----
// CHECK-LABEL: func @mixed_types_allgather
func @mixed_types_allgather(%a0: memref<1x1xf32>, %a1:memref<1x1xi32>) {
"lmhlo.all_gather"(%a0, %a1, %a0, %a1) {all_gather_dimension = 0 : i64,
constrain_layout = false, replica_groups = dense<0> : tensor<1x1xi64>,
use_global_device_ids = false} : (memref<1x1xf32>, memref<1x1xi32>, memref<1x1xf32>, memref<1x1xi32>) -> ()
return
}
// -----
func @invalid_allgather(%input0: memref<2xf32>, %output: memref<8xf32>) {
// expected-error@+1 {{replica id #1 seen more than once}}
"lmhlo.all_gather"(%input0, %output)
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
replica_groups = dense<[[0, 1, 1, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>,
use_global_device_ids = false, all_gather_dimension = 0 : i64} : (memref<2xf32>, memref<8xf32>) -> ()
return
}
// -----
func @invalid_alltoall(%input0: memref<2xf32>, %output: memref<8xf32>) {
// expected-error@+1 {{replica id #4 not seen in replica groups}}
"lmhlo.all_to_all"(%input0, %output)
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
replica_groups = dense<[[0, 1, 2, 3], [5, 6, 7, 8]]> : tensor<2x4xi64>,
use_global_device_ids = false} : (memref<2xf32>, memref<8xf32>) -> ()
return
}
// -----
func @invalid_alltoall(%input0: memref<2xf32>, %output: memref<8xf32>) {
// expected-error@+1 {{replica groups should be a rank 2 tensor of 64 bit integers}}
"lmhlo.all_to_all"(%input0, %output)
{channel_id = {handle = 1 : i64, type = 0 : i64}, constrain_layout = false,
replica_groups = dense<0> : tensor<1xi64>,
use_global_device_ids = false} : (memref<2xf32>, memref<8xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @ceil
func @ceil(%input: memref<2x2xf32>, %result: memref<2x2xf32>) {
"lmhlo.ceil"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> ()
return
}
// -----
func @ceil(%input: memref<2x2xi32>, %result: memref<2x2xi32>) {
// expected-error@+1{{must be memref of floating-point values}}
"lmhlo.ceil"(%input, %result) : (memref<2x2xi32>, memref<2x2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @cos
func @cos(%input: memref<2x2xf32>, %result: memref<2x2xf32>) {
"lmhlo.cosine"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @cos
func @cos(%input: memref<2x2xcomplex<f32>>, %result: memref<2x2xcomplex<f32>>) {
"lmhlo.cosine"(%input, %result) : (memref<2x2xcomplex<f32>>, memref<2x2xcomplex<f32>>) -> ()
return
}
// -----
func @cos(%input: memref<2x2xi32>, %result: memref<2x2xi32>) {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.cosine"(%input, %result) : (memref<2x2xi32>, memref<2x2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sin
func @sin(%input: memref<2x2xf32>, %result: memref<2x2xf32>) {
"lmhlo.sine"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sin
func @sin(%input: memref<2x2xcomplex<f32>>, %result: memref<2x2xcomplex<f32>>) {
"lmhlo.sine"(%input, %result) : (memref<2x2xcomplex<f32>>, memref<2x2xcomplex<f32>>) -> ()
return
}
// -----
func @sin(%input: memref<2x2xi32>, %result: memref<2x2xi32>) {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.sine"(%input, %result) : (memref<2x2xi32>, memref<2x2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @add_memrefs
func @add_memrefs(%arg0: memref<1xi32>, %arg1: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.add"(%arg0, %arg1, %arg_out) : (memref<1xi32>, memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @abs_memref
func @abs_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.abs"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @convert_memref
func @convert_memref(%in: memref<10xf32>, %out: memref<10xi32>) -> () {
"lmhlo.convert"(%in, %out) : (memref<10xf32>, memref<10xi32>) -> ()
return
}
// -----
func @convert_memref(%in: memref<10xf32>, %out: memref<9xi32>) -> () {
// expected-error@+1{{requires the same shape for all operands}}
"lmhlo.convert"(%in, %out) : (memref<10xf32>, memref<9xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @convolution
// CHECK: lmhlo.convolution
// CHECK-SAME: dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
"lmhlo.convolution"(%arg0, %arg1, %arg2) {batch_group_count = 1 : i64,
dimension_numbers = {input_batch_dimension = 0 : i64,
input_feature_dimension = 3 : i64,
input_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>,
kernel_input_feature_dimension = 2 : i64,
kernel_output_feature_dimension = 3 : i64,
kernel_spatial_dimensions = dense<[0, 1]> : tensor<2xi64>,
output_batch_dimension = 0 : i64,
output_feature_dimension = 3 : i64,
output_spatial_dimensions = dense<[1, 2]> : tensor<2xi64>},
feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @convolution
// CHECK: lmhlo.convolution
// CHECK-SAME: dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
// CHECK-SAME{LITERAL}: window = {stride = [2, 1], pad = [[0, 1], [0, 1]], rhs_dilate = [1, 2]}
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {stride = [2, 1], pad = [[0, 1], [0, 1]], rhs_dilate = [1, 2]}
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{Unexpected dimension c, expecting b, f}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [c, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{Unexpected dimension b, expecting i, o}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, b, o]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{Unexpected dimension i, expecting o}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, i]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{Expected dimensions f not specified}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1]x[0, 1, i, o]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{Unexpected keyword b}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o, b]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+2{{expected '['}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = {b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64,
padding = dense<[[0, 1], [0, 1]]> : tensor<2x2xi64>,
rhs_dilation = dense<[1, 2]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+3{{Expected array with2 elements, got 3 elements instead}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {stride = [2, 1], pad = [[0, 1, 2], [0, 1]], rhs_dilate = [1, 2]}
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+3{{Unexpected keyword stide}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {stide = [2, 1], pad = [[0, 1], [0, 1]], rhs_dilate = [1, 2]}
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+3{{expected integer value}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {stride = [2, b], pad = [[0, 1], [0, 1]], rhs_dilate = [1, 2]}
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
}
// -----
func @convolution(%arg0: memref<2x2x3x4xf32>, %arg1: memref<3x5x5x3xf32>, %arg2: memref<3x5x5x4xf32>) {
// expected-error@+3{{Unexpected keyword stride}}
lmhlo.convolution(%arg0, %arg1, %arg2)
dim_numbers = [b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f],
window = {stride = [2, 1], pad = [[0, 1], [0, 1]], rhs_dilate = [1, 2], stride=[2,1]}
{ batch_group_count = 1 : i64, feature_group_count = 1 : i64}
: (memref<2x2x3x4xf32>, memref<3x5x5x3xf32>, memref<3x5x5x4xf32>) -> () return
}
// -----
// CHECK-LABEL: func @exp
func @exp(%input: memref<2x2xf32>, %result: memref<2x2xf32>) {
"lmhlo.exponential"(%input, %result) : (memref<2x2xf32>, memref<2x2xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @exp
func @exp(%input: memref<2x2xcomplex<f32>>, %result: memref<2x2xcomplex<f32>>) {
"lmhlo.exponential"(%input, %result) : (memref<2x2xcomplex<f32>>, memref<2x2xcomplex<f32>>) -> ()
return
}
// -----
func @exp(%input: memref<2x2xi32>, %result: memref<2x2xi32>) {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.exponential"(%input, %result) : (memref<2x2xi32>, memref<2x2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @log_memref
func @log_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.log"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @log_memref
func @log_memref(%in: memref<10xcomplex<f32>>, %out: memref<10xcomplex<f32>>) -> () {
"lmhlo.log"(%in, %out) : (memref<10xcomplex<f32>>, memref<10xcomplex<f32>>) -> ()
return
}
// -----
func @log_memref(%in: memref<10xi32>, %out: memref<10xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.log"(%in, %out) : (memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @neg_memref
func @neg_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.negate"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @rsqrt_memref
func @rsqrt_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.rsqrt"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @rsqrt_memref
func @rsqrt_memref(%in: memref<10xcomplex<f32>>, %out: memref<10xcomplex<f32>>) -> () {
"lmhlo.rsqrt"(%in, %out) : (memref<10xcomplex<f32>>, memref<10xcomplex<f32>>) -> ()
return
}
// -----
func @rsqrt_memref(%in: memref<10xi32>, %out: memref<10xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.rsqrt"(%in, %out) : (memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sqrt_memref
func @sqrt_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.sqrt"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sqrt_memref
func @sqrt_memref(%in: memref<10xcomplex<f32>>, %out: memref<10xcomplex<f32>>) -> () {
"lmhlo.sqrt"(%in, %out) : (memref<10xcomplex<f32>>, memref<10xcomplex<f32>>) -> ()
return
}
// -----
func @sqrt_memref(%in: memref<10xi32>, %out: memref<10xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.sqrt"(%in, %out) : (memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sign_memref
func @sign_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.sign"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @tanh_memref
func @tanh_memref(%in: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.tanh"(%in, %out) : (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @tanh_memref
func @tanh_memref(%in: memref<10xcomplex<f32>>, %out: memref<10xcomplex<f32>>) -> () {
"lmhlo.tanh"(%in, %out) : (memref<10xcomplex<f32>>, memref<10xcomplex<f32>>) -> ()
return
}
// -----
func @tanh_memref(%in: memref<10xi32>, %out: memref<10xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.tanh"(%in, %out) : (memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
func @tanh_memref(%arg0: memref<1xf32>, %arg1: memref<2xf32>) -> () {
// expected-error@+1{{'lmhlo.tanh' op requires all operands to have the same type}}
"lmhlo.tanh"(%arg0, %arg1) : (memref<1xf32>, memref<2xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @add_memref
func @add_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.add"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @div_memref
func @div_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.divide"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @max_memref
func @max_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.maximum"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @min_memref
func @min_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.minimum"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @mul_memref
func @mul_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.multiply"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @sub_memref
func @sub_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.subtract"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @and_memref
func @and_memref(%lhs: memref<10xi32>, %rhs: memref<10xi32>, %out: memref<10xi32>) -> () {
"lmhlo.and"(%lhs, %rhs, %out) : (memref<10xi32>, memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @and_memref
func @and_memref(%lhs: memref<10xi1>, %rhs: memref<10xi1>, %out: memref<10xi1>) -> () {
"lmhlo.and"(%lhs, %rhs, %out) : (memref<10xi1>, memref<10xi1>, memref<10xi1>) -> ()
return
}
// -----
func @and_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer or pred (AKA boolean or 1-bit integer) values}}
"lmhlo.and"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @or_memref
func @or_memref(%lhs: memref<10xi32>, %rhs: memref<10xi32>, %out: memref<10xi32>) -> () {
"lmhlo.or"(%lhs, %rhs, %out) : (memref<10xi32>, memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @or_memref
func @or_memref(%lhs: memref<10xi1>, %rhs: memref<10xi1>, %out: memref<10xi1>) -> () {
"lmhlo.or"(%lhs, %rhs, %out) : (memref<10xi1>, memref<10xi1>, memref<10xi1>) -> ()
return
}
// -----
func @or_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer or pred (AKA boolean or 1-bit integer) values}}
"lmhlo.or"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @xor_memref
func @xor_memref(%lhs: memref<10xi32>, %rhs: memref<10xi32>, %out: memref<10xi32>) -> () {
"lmhlo.xor"(%lhs, %rhs, %out) : (memref<10xi32>, memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @xor_memref
func @xor_memref(%lhs: memref<10xi1>, %rhs: memref<10xi1>, %out: memref<10xi1>) -> () {
"lmhlo.xor"(%lhs, %rhs, %out) : (memref<10xi1>, memref<10xi1>, memref<10xi1>) -> ()
return
}
// -----
func @xor_memref(%lhs: memref<10xf32>, %rhs: memref<10xf32>, %out: memref<10xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer or pred (AKA boolean or 1-bit integer) values}}
"lmhlo.xor"(%lhs, %rhs, %out) : (memref<10xf32>, memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @broadcast_in_dim_memref
func @broadcast_in_dim_memref(%arg0: memref<1x2xi32>, %out: memref<1x2x2xi32>) -> () {
"lmhlo.broadcast_in_dim"(%arg0, %out) {broadcast_dimensions = dense<[1, 2]> : tensor<2xi64>} : (memref<1x2xi32>, memref<1x2x2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @broadcast_in_dim_zero_rank_memref
func @broadcast_in_dim_zero_rank_memref(%arg0: memref<i32>, %out: memref<1x2x3xi32>) -> () {
"lmhlo.broadcast_in_dim"(%arg0, %out) {broadcast_dimensions = dense<[]> : tensor<0xi64>} : (memref<i32>, memref<1x2x3xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @reduce_memref
func @reduce_memref(%input: memref<10xf32>, %init: memref<f32>, %out: memref<1xf32>) -> () {
"lmhlo.reduce"(%input, %init, %out) ( {
^bb0(%arg1: memref<f32>, %arg2: memref<f32>, %result: memref<f32>):
"lmhlo.add"(%arg1, %arg2, %result) : (memref<f32>, memref<f32>, memref<f32>) -> ()
"lmhlo.terminator"() : () -> ()
} ) {dimensions = dense<[0]> : tensor<1xi64>} : (memref<10xf32>, memref<f32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @fusion_memref
func @fusion_memref(%input1: memref<10xf32>, %input2: memref<10xf32>, %input3: memref<10xf32>, %out: memref<10xf32>) -> () {
"lmhlo.fusion"() ( {
%0 = memref.tensor_load %input1 : memref<10xf32>
%1 = memref.tensor_load %input2 : memref<10xf32>
%2 = "mhlo.add"(%0, %1) {name = "add"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32>
%3 = memref.tensor_load %input3 : memref<10xf32>
%4 = "mhlo.multiply"(%2, %3) {name = "multiply"} : (tensor<10xf32>, tensor<10xf32>) -> tensor<10xf32>
memref.tensor_store %4, %out : memref<10xf32>
"lmhlo.terminator"() : () -> ()
} ) : () -> ()
return
}
// -----
// CHECK-LABEL: func @case_memref
func @case_memref(%index: memref<i32>, %operand_1: memref<f32>, %operand_2: memref<f32>, %operand_3: memref<f32>, %out: memref<f32>) -> () {
"lmhlo.case"(%index) ( {
^bb0:
"lmhlo.negate"(%operand_1, %out) : (memref<f32>, memref<f32>) -> ()
"lmhlo.terminator"() : () -> ()
}, {
^bb0:
"lmhlo.copy"(%operand_2, %out) : (memref<f32>, memref<f32>) -> ()
"lmhlo.terminator"() : () -> ()
}, {
^bb0:
"lmhlo.add"(%operand_3, %operand_3, %out) : (memref<f32>, memref<f32>, memref<f32>) -> ()
"lmhlo.terminator"() : () -> ()
}
) : (memref<i32>) -> ()
return
}
// -----
// CHECK-LABEL: func @atan2_memrefs
func @atan2_memrefs(%arg0: memref<1xf32>, %arg1: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.atan2"(%arg0, %arg1, %arg_out) : (memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @atan2_memrefs
func @atan2_memrefs(%arg0: memref<1xcomplex<f32>>, %arg1: memref<1xcomplex<f32>>, %arg_out: memref<1xcomplex<f32>>) -> () {
"lmhlo.atan2"(%arg0, %arg1, %arg_out) : (memref<1xcomplex<f32>>, memref<1xcomplex<f32>>, memref<1xcomplex<f32>>) -> ()
return
}
// -----
func @atan2_memrefs(%arg0: memref<1xi32>, %arg1: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.atan2"(%arg0, %arg1, %arg_out) : (memref<1xi32>, memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @bitcast_convert_memrefs
func @bitcast_convert_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.bitcast_convert"(%arg0, %arg_out) : (memref<1xf32>, memref<1xi32>) -> ()
return
}
// -----
func @bitcast_convert_memrefs(%arg0: memref<1xf32>, %arg_out: memref<2xi32>) -> () {
// expected-error@+1{{requires the same shape for all operands}}
"lmhlo.bitcast_convert"(%arg0, %arg_out) : (memref<1xf32>, memref<2xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @clz_memrefs
func @clz_memrefs(%arg0: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.count_leading_zeros"(%arg0, %arg_out) : (memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @expm1_memrefs
func @expm1_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.exponential_minus_one"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @expm1_memrefs
func @expm1_memrefs(%arg0: memref<1xcomplex<f32>>, %arg_out: memref<1xcomplex<f32>>) -> () {
"lmhlo.exponential_minus_one"(%arg0, %arg_out) : (memref<1xcomplex<f32>>, memref<1xcomplex<f32>>) -> ()
return
}
// -----
// CHECK-LABEL: func @floor_memrefs
func @floor_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.floor"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @floor_memrefs(%arg0: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
// expected-error@+1{{must be memref of floating-point values}}
"lmhlo.floor"(%arg0, %arg_out) : (memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @imag_memrefs
func @imag_memrefs(%arg0: memref<1xcomplex<f32>>, %arg_out: memref<1xf32>) -> () {
"lmhlo.imag"(%arg0, %arg_out) : (memref<1xcomplex<f32>>, memref<1xf32>) -> ()
return
}
// -----
func @imag_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error@+1{{must be memref of complex-type values}}
"lmhlo.imag"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @real_memrefs
func @real_memrefs(%arg0: memref<1xcomplex<f32>>, %arg_out: memref<1xf32>) -> () {
"lmhlo.real"(%arg0, %arg_out) : (memref<1xcomplex<f32>>, memref<1xf32>) -> ()
return
}
// -----
func @real_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error@+1{{must be memref of complex-type values}}
"lmhlo.real"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @is_finite_memrefs
func @is_finite_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xi1>) -> () {
"lmhlo.is_finite"(%arg0, %arg_out) : (memref<1xf32>, memref<1xi1>) -> ()
return
}
// -----
// CHECK-LABEL: func @log1p_memrefs
func @log1p_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.log_plus_one"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @log1p_memrefs
func @log1p_memrefs(%arg0: memref<1xcomplex<f32>>, %arg_out: memref<1xcomplex<f32>>) -> () {
"lmhlo.log_plus_one"(%arg0, %arg_out) : (memref<1xcomplex<f32>>, memref<1xcomplex<f32>>) -> ()
return
}
// -----
func @log1p_memref(%in: memref<10xi32>, %out: memref<10xi32>) -> () {
// expected-error@+1{{must be memref of floating-point or complex-type values}}
"lmhlo.log_plus_one"(%in, %out) : (memref<10xi32>, memref<10xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @not_memrefs
func @not_memrefs(%arg0: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.not"(%arg0, %arg_out) : (memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @not_memrefs
func @not_memrefs(%arg0: memref<1xi1>, %arg_out: memref<1xi1>) -> () {
"lmhlo.not"(%arg0, %arg_out) : (memref<1xi1>, memref<1xi1>) -> ()
return
}
// -----
func @not_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer or pred (AKA boolean or 1-bit integer) values}}
"lmhlo.not"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @popcnt_memrefs
func @popcnt_memrefs(%arg0: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.popcnt"(%arg0, %arg_out) : (memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
func @popcnt_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer values}}
"lmhlo.popcnt"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @reduce_precision_memrefs
func @reduce_precision_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.reduce_precision"(%arg0, %arg_out) { exponent_bits = 4 : i32, mantissa_bits = 4 : i32 } : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @round_memrefs
func @round_memrefs(%arg0: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
"lmhlo.round_nearest_afz"(%arg0, %arg_out) : (memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @round_memrefs(%arg0: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
// expected-error@+1{{must be memref of floating-point values}}
"lmhlo.round_nearest_afz"(%arg0, %arg_out) : (memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
// CHECK-LABEL: func @shift_left_memrefs
func @shift_left_memrefs(%arg0: memref<1xi32>, %arg1: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.shift_left"(%arg0, %arg1, %arg_out) : (memref<1xi32>, memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
func @shift_left_memrefs(%arg0: memref<1xf32>, %arg1: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer values}}
"lmhlo.shift_left"(%arg0, %arg1, %arg_out) : (memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @shift_right_arithmetic_memrefs
func @shift_right_arithmetic_memrefs(%arg0: memref<1xi32>, %arg1: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.shift_right_arithmetic"(%arg0, %arg1, %arg_out) : (memref<1xi32>, memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
func @shift_right_arithmetic_memrefs(%arg0: memref<1xf32>, %arg1: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer values}}
"lmhlo.shift_right_arithmetic"(%arg0, %arg1, %arg_out) : (memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @shift_right_logical_memrefs
func @shift_right_logical_memrefs(%arg0: memref<1xi32>, %arg1: memref<1xi32>, %arg_out: memref<1xi32>) -> () {
"lmhlo.shift_right_logical"(%arg0, %arg1, %arg_out) : (memref<1xi32>, memref<1xi32>, memref<1xi32>) -> ()
return
}
// -----
func @shift_right_logical_memrefs(%arg0: memref<1xf32>, %arg1: memref<1xf32>, %arg_out: memref<1xf32>) -> () {
// expected-error @+1 {{must be memref of 8/16/32/64-bit signless integer or 8/16/32/64-bit unsigned integer values}}
"lmhlo.shift_right_logical"(%arg0, %arg1, %arg_out) : (memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @all_reduce_memrefs
func @all_reduce_memrefs(%arg0: memref<10xf32>, %arg_out: memref<10xf32>) -> () {
"lmhlo.all_reduce"(%arg0, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>):
%max = mhlo.maximum %lhs, %rhs : tensor<f32>
"mhlo.return"(%max) : (tensor<f32>) -> ()
})
{ replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64> }: (memref<10xf32>, memref<10xf32>) -> ()
"lmhlo.all_reduce"(%arg0, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>):
%max = mhlo.maximum %lhs, %rhs : tensor<f32>
"mhlo.return"(%max) : (tensor<f32>) -> ()
})
{
replica_groups = dense<[[0, 2, 4, 6], [1, 3, 5, 7]]> : tensor<2x4xi64>,
channel_id = { handle = 5 : i64, type = 2 : i64 },
constrain_layout = true,
use_global_device_ids = true
}: (memref<10xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @collective_permute_memrefs
func @collective_permute_memrefs(%arg0: memref<128x32xf32>, %arg_out: memref<128x32xf32>) -> () {
"lmhlo.collective_permute"(%arg0, %arg_out) {
source_target_pairs = dense<[[0, 1], [1, 2], [2, 3]]> : tensor<3x2xi64>
} : (memref<128x32xf32>, memref<128x32xf32>) -> ()
"lmhlo.collective_permute"(%arg0, %arg_out) {
source_target_pairs = dense<[[0, 1], [1, 2], [2, 3]]> : tensor<3x2xi64>,
channel_id = { handle = 5 : i64, type = 2 : i64 }
} : (memref<128x32xf32>, memref<128x32xf32>) -> ()
return
}
// -----
func @invalid_collective_permute(%arg0: memref<128x32xf32>, %arg_out: memref<128x32xf32>) -> () {
// expected-error@+1{{expect source_target_pairs attribute of shape (N, 2), but got (1, 3)}}
"lmhlo.collective_permute"(%arg0, %arg_out) {
source_target_pairs = dense<[[2, 3, 4]]> : tensor<1x3xi64>
} : (memref<128x32xf32>, memref<128x32xf32>) -> ()
return
}
// -----
func @invalid_collective_permute(%arg0: memref<128x32xf32>, %arg_out: memref<128x32xf32>) -> () {
// expected-error@+1{{duplicate sources not allowed.}}
"lmhlo.collective_permute"(%arg0, %arg_out) {
source_target_pairs = dense<[[1,2], [1,3]]> : tensor<2x2xi64>
} : (memref<128x32xf32>, memref<128x32xf32>) -> ()
return
}
// -----
func @invalid_collective_permute(%arg0: memref<128x32xf32>, %arg_out: memref<128x32xf32>) -> () {
// expected-error@+1{{duplicate targets not allowed.}}
"lmhlo.collective_permute"(%arg0, %arg_out) {
source_target_pairs = dense<[[1,2], [0,2]]> : tensor<2x2xi64>
} : (memref<128x32xf32>, memref<128x32xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @fft_memrefs
func @fft_memrefs(%arg0: memref<3x9xf32>, %arg_out: memref<3x5xcomplex<f32>>) -> () {
"lmhlo.fft"(%arg0, %arg_out) {fft_length = dense<9> : tensor<1xi64>, fft_type = "RFFT"} : (memref<3x9xf32>, memref<3x5xcomplex<f32>>) -> ()
return
}
// -----
// CHECK-LABEL: func @batch_norm_grad_memrefs
func @batch_norm_grad_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%arg3: memref<8xf32>, %arg4: memref<8x8x8x8xf32>,
%grad_operand: memref<8x8x8x8xf32>, %grad_scale: memref<8xf32>,
%grad_offset: memref<8xf32>) -> () {
"lmhlo.batch_norm_grad"(%arg0, %arg1, %arg2, %arg3, %arg4, %grad_operand, %grad_scale, %grad_offset) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>,
memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @batch_norm_inference_memrefs
func @batch_norm_inference_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%arg3: memref<8xf32>, %arg4: memref<8xf32>, %arg_out: memref<8x8x8x8xf32>) -> () {
"lmhlo.batch_norm_inference"(%arg0, %arg1, %arg2, %arg3, %arg4, %arg_out) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @batch_norm_training_memrefs
func @batch_norm_training_memrefs(%arg0: memref<8x8x8x8xf32>, %arg1: memref<8xf32>, %arg2: memref<8xf32>,
%output: memref<8x8x8x8xf32>, %batch_mean: memref<8xf32>,
%batch_var: memref<8xf32>) -> () {
"lmhlo.batch_norm_training"(%arg0, %arg1, %arg2, %output, %batch_mean, %batch_var) {epsilon = 1.000000e-03 : f32, feature_index = 3 : i64}
: (memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>, memref<8x8x8x8xf32>, memref<8xf32>, memref<8xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @cholesky_memrefs
func @cholesky_memrefs(%arg0: memref<1x291x291xf32>, %arg_out: memref<1x291x291xf32>) -> () {
"lmhlo.cholesky"(%arg0, %arg_out) : (memref<1x291x291xf32>, memref<1x291x291xf32>) -> ()
"lmhlo.cholesky"(%arg0, %arg_out) { lower = true } : (memref<1x291x291xf32>, memref<1x291x291xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @infeed_memrefs
func @infeed_memrefs(%arg_out: memref<3xf32>) -> () {
"lmhlo.infeed"(%arg_out) { config = "x" } : (memref<3xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @outfeed_memrefs
func @outfeed_memrefs(%arg0: memref<3xf32>) -> () {
"lmhlo.outfeed"(%arg0) { config = "x" } : (memref<3xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @replica_id_memrefs
func @replica_id_memrefs(%arg_out: memref<ui32>) -> () {
"lmhlo.replica_id"(%arg_out) : (memref<ui32>) -> ()
return
}
// -----
// CHECK-LABEL: func @triangular_solve_memrefs
func @triangular_solve_memrefs(%arg0: memref<4x4xf32>, %arg1: memref<3x4xf32>, %arg_out: memref<3x4xf32>) -> () {
"lmhlo.triangular_solve"(%arg0, %arg1, %arg_out)
{layout_a = dense<[1, 0]> : tensor<2xindex>,
layout_b = dense<[1, 0]> : tensor<2xindex>,
layout_output = dense<[1, 0]> : tensor<2xindex>,
left_side = true, lower = true, transpose_a = "NO_TRANSPOSE",
unit_diagonal = true}
: (memref<4x4xf32>, memref<3x4xf32>, memref<3x4xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @while_memrefs
func @while_memrefs(%arg0: memref<i64>, %arg_out: memref<i64>, %cond: memref<i1>) -> () {
"lmhlo.while"(%cond) (
{ ^bb0: "lmhlo.terminator"() : () -> () },
{ ^bb0: "lmhlo.terminator"() : () -> () }
) : (memref<i1>) -> ()
return
}
// -----
// CHECK-LABEL: func @while_memrefs
func @while_memrefs(%arg0: memref<i64>, %arg1: memref<5xf32>, %arg0_out: memref<i64>, %arg1_out: memref<5xf32>, %cond: memref<i1>) -> () {
"lmhlo.while"(%cond) (
{ ^bb0: "lmhlo.terminator"() : () -> () },
{ ^bb0: "lmhlo.terminator"() : () -> () }
) : (memref<i1>) -> ()
return
}
// -----
// CHECK-LABEL: func @scatter_memrefs
func @scatter_memrefs(%input: memref<200x100x300xf32>, %indices: memref<10x2xi32>,
%updates: memref<10x300xf32>, %arg_out: memref<200x100x300xf32>) -> () {
"lmhlo.scatter" (%input, %indices, %updates, %arg_out) ({
^bb0(%lhs: tensor<f32>, %rhs: tensor<f32>): // no predecessors
%add = mhlo.add %lhs, %rhs : tensor<f32>
"mhlo.return"(%add) : (tensor<f32>) -> ()
}) {
scatter_dimension_numbers = {
update_window_dims = dense<[1]> : tensor<1xi64>,
inserted_window_dims = dense<[0, 1]> : tensor<2xi64>,
scatter_dims_to_operand_dims = dense<[0, 1]> : tensor<2xi64>,
index_vector_dim = 1 : i64
},
indices_are_sorted = true,
unique_indices = true
} : (memref<200x100x300xf32>, memref<10x2xi32>, memref<10x300xf32>, memref<200x100x300xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @map_memrefs
func @map_memrefs(%arg0: memref<20xf32>, %arg1: memref<20xf32>, %arg_out: memref<20xf32>) -> () {
"lmhlo.map"(%arg0, %arg1, %arg_out) ({
^bb0(%a: tensor<f32>, %b: tensor<f32>):
%c = mhlo.add %a, %b : tensor<f32>
"mhlo.return"(%c) : (tensor<f32>) -> ()
}) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<20xf32>) -> ()
return
}
// -----
func @map_memrefs(%arg0: memref<20xf32>, %arg1: memref<20xf32>, %arg_out: memref<10xf32>) -> () {
// expected-error@+1{{requires the same shape for all operands}}
"lmhlo.map"(%arg0, %arg1, %arg_out) ({
^bb0(%a: tensor<f32>, %b: tensor<f32>):
%c = mhlo.add %a, %b : tensor<f32>
"mhlo.return"(%c) : (tensor<f32>) -> ()
}) {dimensions = dense<0> : tensor<1xi64>} : (memref<20xf32>, memref<20xf32>, memref<10xf32>) -> ()
return
}
// -----
// CHECK-LABEL: func @rng_get_and_update_state_memrefs
func @rng_get_and_update_state_memrefs(%state: memref<1xui64>) -> () {
"lmhlo.rng_get_and_update_state"(%state) { delta = 1 : i64 } : (memref<1xui64>) -> ()
return
}
// -----
// CHECK-LABEL: func @sort_memrefs
func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"lmhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"mhlo.return"(%7) : (tensor<i1>) -> ()
}) {dimension = 1 : i64, is_stable = true} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return
}
// -----
// CHECK-LABEL: func @sort_memrefs
func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"lmhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"mhlo.return"(%7) : (tensor<i1>) -> ()
}) {dimension = 1 : i64} : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return
}
// -----
// CHECK-LABEL: func @sort_memrefs
func @sort_memrefs(%arg0: memref<16x16xf32>, %arg1: memref<16x16xf16>,
%out0: memref<16x16xf32>, %out1: memref<16x16xf16>) -> () {
"lmhlo.sort"(%arg0, %arg1, %out0, %out1) ( {
^bb0(%a: tensor<f32>, %b: tensor<f32>, %c: tensor<f16>, %d: tensor<f16>):
%7 = "mhlo.compare"(%a, %b) {comparison_direction = "GT"} : (tensor<f32>, tensor<f32>) -> tensor<i1>
"mhlo.return"(%7) : (tensor<i1>) -> ()
}) : (memref<16x16xf32>, memref<16x16xf16>, memref<16x16xf32>, memref<16x16xf16>) -> ()
return
}
// -----
// CHECK-LABEL: func @valid_custom_call
func @valid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0,3],
results_to_target_results = [1,2]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{number of entries in the mapping for args (1) should match the number of args for the operation (2)}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0],
results_to_target_results = [1,2]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{number of entries in the mapping for results (1) should match the number of results for the operation (2)}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0, 3],
results_to_target_results = [1]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{entry 0 cannot appear more than once in the mapping for args}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0, 0],
results_to_target_results = [1, 2]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{entry 1 cannot appear more than once in the mapping for results}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0, 1],
results_to_target_results = [1, 1]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{entries in mapping for args must be >= 0 and less than target's number of args (4)}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0, 6],
results_to_target_results = [1, 2]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_custom_call(%arg0:memref<1xf32>, %arg1:memref<1xf32>) -> () {
// expected-error @+1 {{entries in mapping for results must be >= 0 and less than target's number of results (3)}}
"lmhlo.custom_call"(%arg0, %arg0, %arg1, %arg1) {
backend_config = "",
call_target_name = "foo",
has_side_effects = false,
operand_segment_sizes = dense<2> : vector<2xi32>,
target_arg_mapping = {
num_args = 4 : i64,
num_results = 3 : i64,
args_to_target_args = [0, 1],
results_to_target_results = [1, 3]
}
} : (memref<1xf32>, memref<1xf32>, memref<1xf32>, memref<1xf32>) -> ()
return
}
// -----
func @invalid_complex_abs_call(%input:memref<2xcomplex<f32>>, %result:memref<2xcomplex<f32>>) -> () {
// expected-error @+1 {{requires output type to be the same as the element type of the input}}
"lmhlo.abs"(%input, %result)
: (memref<2xcomplex<f32>>, memref<2xcomplex<f32>>) -> ()
return
}
// -----
func @invalid_float_abs_call(%input:memref<2xf32>, %result:memref<2xf64>) -> () {
// expected-error @+1 {{requires all operands to have the same type}}
"lmhlo.abs"(%input, %result) : (memref<2xf32>, memref<2xf64>) -> ()
return
}